Robust sufficient conditions for uniform observability of a linear nonstationary singularly perturbed system
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 150-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a linear nonstationary singularly perturbed system with small coefficients of higher derivatives, we examine the property of uniform observability, which characterizes the possibility of uniquely determining the state of the system at any time $t$ by the values of the output function and its derivatives up to a certain order only at the point $t$, as well as the property of approximative observability, which means the possibility of accurate estimating the current state of the system without differentiating the output function using $\delta$-sequences.
Keywords: singularly perturbed system, nonstationary system, uniform observability, approximate observability, splitting transformation, robust sufficient conditions.
@article{INTO_2023_226_a14,
     author = {O. B. Tsekhan},
     title = {Robust sufficient conditions for uniform observability of a linear nonstationary singularly perturbed system},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {150--164},
     publisher = {mathdoc},
     volume = {226},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a14/}
}
TY  - JOUR
AU  - O. B. Tsekhan
TI  - Robust sufficient conditions for uniform observability of a linear nonstationary singularly perturbed system
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 150
EP  - 164
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_226_a14/
LA  - ru
ID  - INTO_2023_226_a14
ER  - 
%0 Journal Article
%A O. B. Tsekhan
%T Robust sufficient conditions for uniform observability of a linear nonstationary singularly perturbed system
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 150-164
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_226_a14/
%G ru
%F INTO_2023_226_a14
O. B. Tsekhan. Robust sufficient conditions for uniform observability of a linear nonstationary singularly perturbed system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 150-164. http://geodesic.mathdoc.fr/item/INTO_2023_226_a14/

[1] Antosik P., Mikusinskii Ya., Sikorskii R., Teoriya obobschennykh funktsii, Mir, M., 1976

[2] Astrovskii A. I., “Ravnomerno tochechnaya nablyudaemost lineinykh nestatsionarnykh sistem”, Dokl. NAN Belarusi., 43:3 (1999), 9–12 | MR

[3] Astrovskii A. I., “Obobschennaya matritsa Grama i ee primenenie k probleme nablyudaemosti lineinykh nestatsionarnykh sistem”, Mat. zametki., 69:2 (2001), 163–170 | DOI | MR

[4] Astrovskii A. I., “Kanonicheskie formy lineinykh nestatsionarnykh sistem nablyudeniya i khessenbergova nablyudaemost”, Dokl. RAN., 383:4 (2002), 439–442 | MR

[5] Astrovskii A. I., Nablyudaemost lineinykh nestatsionarnykh sistem, MIU, Minsk, 2007

[6] Astrovskii A. I., Gaishun I. V., “Ravnomernaya i approksimativnaya nablyudaemost lineinykh nestatsionarnykh sistem”, Avtomat. telemekh., 1998, no. 7, 3–13 | Zbl

[7] Astrovskii A. I., Gaishun I. V., “Kvazidifferentsiruemost i nablyudaemost lineinykh nestatsionarnykh sistem”, Differ. uravn., 45:11 (2009), 1567–1576 | MR | Zbl

[8] Astrovskii A. I., Gaishun I. V., Lineinye sistemy s kvazidifferentsiruemymi koeffitsientami: upravlyaemost i nablyudaemost dvizhenii, Belarus. navuka, Minsk, 2013

[9] Astrovskii A. I., Gaishun I. V., “Otsenivanie sostoyanii lineinykh nestatsionarnykh sistem nablyudeniya”, Differ. uravn., 55:3 (2019), 370-–379 | DOI | Zbl

[10] Vasileva A. B., Dmitriev M. G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki tekhn. Ser. Mat. anal., 20 (1982), 3-–77 | MR | Zbl

[11] Gabasov R., Kirillova F. M., Kachestvennaya teoriya optimalnykh protsessov, Nauka, M., 1971

[12] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, In-t mat. NAN Belarusi, Minsk, 1999

[13] Gaishun I. V., Astpovskii A. I., “Opisanie mnozhestva ravnomerno nablyudaemykh lineinykh nestatsionarny sistem”, Dokl. AN Belarusi., 40:5 (1996), 5–8 | MR

[14] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomat. telemekh., 2006, no. 1, 3-–51 | Zbl

[15] Kopeikina T. B., Tsekhan O. B., “Nablyudaemost lineinykh statsionarnykh singulyarno vozmuschennykh sistem v prostranstve sostoyanii”, Prikl. mat. mekh., 57:6 (1993), 22–32 | MR | Zbl

[16] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[17] Chang A., “An algebraic characterization of controllability”, IEEE Trans. Automat. Control., 10:5 (1965), 112–113 | DOI

[18] Chang K., “Singular perturbations of a general boundary value problem”, SIAM J. Math. Anal., 3:3 (1972), 520-–526 | DOI | MR | Zbl

[19] Glizer V. V., “Observability of singularly perturbed linear time-dependent systems with small delay”, J. Dynam. Control Syst., 10:3 (2004), 329–363 | DOI | MR | Zbl

[20] Kokotovic P. V., Khalil H. K., O'Reilly J., Singular Perturbations Methods in Control: Analysis and Design, Academic Press, New York, 1999 | MR

[21] Kopeikina T. B., “Some approaches to the controllability investigation of singularly perturbed dynamic systems”, Syst. Sci., 21:1 (1995), 17–-36 | MR | Zbl

[22] Kurina G. A., Dmitriev M. G., Naidu Desineni S., “Discrete singularly perturbed control problems: A survey”, Dynam. Contin. Discr. Impuls. Syst. Ser. B. Appl. Algorithms., 24 (2017), 335–370 | MR | Zbl

[23] Lee E. B., Markus L., Foundations of Optimal Control Theory, Wiley, New York, 1967 | MR | Zbl

[24] Naidu D. S., “Singular perturbations and time scales in control theory and applications: an overview”, Dynam. Contin. Discr. Impuls. Syst. Ser. B. Appl. Algorithms., 2002, no. 9, 233–278 | MR | Zbl

[25] O'Reilly J., “Full-order observers for a class of singularly perturbed linear time-varying systems”, Int. J. Control., 30:5 (1979), 745–756 | DOI | MR | Zbl

[26] O'Reilly J., Observers for Linear Systems, Academic Press, London, 1983 | MR | Zbl

[27] Silverman L. M., “Transformation of time-variable systems to canonical (phase-variable) form”, IEEE Trans. Automat. Control., AC-11:2 (1966), 300–303 | DOI

[28] Silverman L. M., Meadows H. E., “Controllability and observability in time-variable linear systems”, SIAM J. Control., 5:1 (1967), 64–73 | DOI | MR | Zbl

[29] Wolovich W. A., “On state estimation of observable systems”, Preprint NASA Electron. Res. Center. Cambridge., 1968, no. 6, 210–220 | MR