Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_226_a14, author = {O. B. Tsekhan}, title = {Robust sufficient conditions for uniform observability of a linear nonstationary singularly perturbed system}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {150--164}, publisher = {mathdoc}, volume = {226}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a14/} }
TY - JOUR AU - O. B. Tsekhan TI - Robust sufficient conditions for uniform observability of a linear nonstationary singularly perturbed system JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 150 EP - 164 VL - 226 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_226_a14/ LA - ru ID - INTO_2023_226_a14 ER -
%0 Journal Article %A O. B. Tsekhan %T Robust sufficient conditions for uniform observability of a linear nonstationary singularly perturbed system %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 150-164 %V 226 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_226_a14/ %G ru %F INTO_2023_226_a14
O. B. Tsekhan. Robust sufficient conditions for uniform observability of a linear nonstationary singularly perturbed system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 150-164. http://geodesic.mathdoc.fr/item/INTO_2023_226_a14/
[1] Antosik P., Mikusinskii Ya., Sikorskii R., Teoriya obobschennykh funktsii, Mir, M., 1976
[2] Astrovskii A. I., “Ravnomerno tochechnaya nablyudaemost lineinykh nestatsionarnykh sistem”, Dokl. NAN Belarusi., 43:3 (1999), 9–12 | MR
[3] Astrovskii A. I., “Obobschennaya matritsa Grama i ee primenenie k probleme nablyudaemosti lineinykh nestatsionarnykh sistem”, Mat. zametki., 69:2 (2001), 163–170 | DOI | MR
[4] Astrovskii A. I., “Kanonicheskie formy lineinykh nestatsionarnykh sistem nablyudeniya i khessenbergova nablyudaemost”, Dokl. RAN., 383:4 (2002), 439–442 | MR
[5] Astrovskii A. I., Nablyudaemost lineinykh nestatsionarnykh sistem, MIU, Minsk, 2007
[6] Astrovskii A. I., Gaishun I. V., “Ravnomernaya i approksimativnaya nablyudaemost lineinykh nestatsionarnykh sistem”, Avtomat. telemekh., 1998, no. 7, 3–13 | Zbl
[7] Astrovskii A. I., Gaishun I. V., “Kvazidifferentsiruemost i nablyudaemost lineinykh nestatsionarnykh sistem”, Differ. uravn., 45:11 (2009), 1567–1576 | MR | Zbl
[8] Astrovskii A. I., Gaishun I. V., Lineinye sistemy s kvazidifferentsiruemymi koeffitsientami: upravlyaemost i nablyudaemost dvizhenii, Belarus. navuka, Minsk, 2013
[9] Astrovskii A. I., Gaishun I. V., “Otsenivanie sostoyanii lineinykh nestatsionarnykh sistem nablyudeniya”, Differ. uravn., 55:3 (2019), 370-–379 | DOI | Zbl
[10] Vasileva A. B., Dmitriev M. G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki tekhn. Ser. Mat. anal., 20 (1982), 3-–77 | MR | Zbl
[11] Gabasov R., Kirillova F. M., Kachestvennaya teoriya optimalnykh protsessov, Nauka, M., 1971
[12] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, In-t mat. NAN Belarusi, Minsk, 1999
[13] Gaishun I. V., Astpovskii A. I., “Opisanie mnozhestva ravnomerno nablyudaemykh lineinykh nestatsionarny sistem”, Dokl. AN Belarusi., 40:5 (1996), 5–8 | MR
[14] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomat. telemekh., 2006, no. 1, 3-–51 | Zbl
[15] Kopeikina T. B., Tsekhan O. B., “Nablyudaemost lineinykh statsionarnykh singulyarno vozmuschennykh sistem v prostranstve sostoyanii”, Prikl. mat. mekh., 57:6 (1993), 22–32 | MR | Zbl
[16] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968
[17] Chang A., “An algebraic characterization of controllability”, IEEE Trans. Automat. Control., 10:5 (1965), 112–113 | DOI
[18] Chang K., “Singular perturbations of a general boundary value problem”, SIAM J. Math. Anal., 3:3 (1972), 520-–526 | DOI | MR | Zbl
[19] Glizer V. V., “Observability of singularly perturbed linear time-dependent systems with small delay”, J. Dynam. Control Syst., 10:3 (2004), 329–363 | DOI | MR | Zbl
[20] Kokotovic P. V., Khalil H. K., O'Reilly J., Singular Perturbations Methods in Control: Analysis and Design, Academic Press, New York, 1999 | MR
[21] Kopeikina T. B., “Some approaches to the controllability investigation of singularly perturbed dynamic systems”, Syst. Sci., 21:1 (1995), 17–-36 | MR | Zbl
[22] Kurina G. A., Dmitriev M. G., Naidu Desineni S., “Discrete singularly perturbed control problems: A survey”, Dynam. Contin. Discr. Impuls. Syst. Ser. B. Appl. Algorithms., 24 (2017), 335–370 | MR | Zbl
[23] Lee E. B., Markus L., Foundations of Optimal Control Theory, Wiley, New York, 1967 | MR | Zbl
[24] Naidu D. S., “Singular perturbations and time scales in control theory and applications: an overview”, Dynam. Contin. Discr. Impuls. Syst. Ser. B. Appl. Algorithms., 2002, no. 9, 233–278 | MR | Zbl
[25] O'Reilly J., “Full-order observers for a class of singularly perturbed linear time-varying systems”, Int. J. Control., 30:5 (1979), 745–756 | DOI | MR | Zbl
[26] O'Reilly J., Observers for Linear Systems, Academic Press, London, 1983 | MR | Zbl
[27] Silverman L. M., “Transformation of time-variable systems to canonical (phase-variable) form”, IEEE Trans. Automat. Control., AC-11:2 (1966), 300–303 | DOI
[28] Silverman L. M., Meadows H. E., “Controllability and observability in time-variable linear systems”, SIAM J. Control., 5:1 (1967), 64–73 | DOI | MR | Zbl
[29] Wolovich W. A., “On state estimation of observable systems”, Preprint NASA Electron. Res. Center. Cambridge., 1968, no. 6, 210–220 | MR