Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_226_a13, author = {V. L. Khatskevich}, title = {Integral fuzzy means in the aggregation problem for fuzzy information}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {138--149}, publisher = {mathdoc}, volume = {226}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a13/} }
TY - JOUR AU - V. L. Khatskevich TI - Integral fuzzy means in the aggregation problem for fuzzy information JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 138 EP - 149 VL - 226 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_226_a13/ LA - ru ID - INTO_2023_226_a13 ER -
%0 Journal Article %A V. L. Khatskevich %T Integral fuzzy means in the aggregation problem for fuzzy information %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 138-149 %V 226 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_226_a13/ %G ru %F INTO_2023_226_a13
V. L. Khatskevich. Integral fuzzy means in the aggregation problem for fuzzy information. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 138-149. http://geodesic.mathdoc.fr/item/INTO_2023_226_a13/
[18] Volkova E. S., Gisin V. B., Nechetkie mnozhestva i myagkie vychisleniya v ekonomike i finansakh, KNORUS, M., 2019
[19] Dzhini K., Srednie velichiny, M., 1970
[20] Ledeneva T. M., Podvalnyi S. L., “Agregirovanie informatsii v otsenochnykh sistemakh”, Vestn. VGU. Ser. Sist. anal. inform. tekhnol., 2016, no. 4, 155–164
[21] Pegat A., Nechetkoe modelirovanie i upravlenie, Binom, M., 2015
[22] Smolyak S. A., Otsenki effektivnosti investitsionnykh proektov v usloviyakh riska i neopredelennosti, Nauka, M., 2002
[23] Khardi G., Poia D., Littlvud D., Neravenstva, MNTsNMO, M., 2008
[24] Khatskevich V. L., “O srednikh znacheniyakh nechetkikh chisel i ikh sistem”, Nechetkie sistemy i myagkie vychisleniya., 16:1 (2021), 5–-20
[25] Aumann R. J., “Integrals of set-valued functions”, J. Math. Anal. Appl., 12:1 (1965), 1–12 | DOI | MR | Zbl
[26] Beliakov G., Bustince H., Calvo T., A Practical Guide to Averaging Functions, Springer, Cham, 2016 | MR
[27] Diamond P., Kloeden P., “Metric spaces of fuzzy sets”, Fuzzy Sets Syst., 35:2 (1990), 241–249 | DOI | MR | Zbl
[28] Dubois D., Prade H., “The mean value of fuzzy number”, Fuzzy Sets Syst., 24:3 (1987), 279–300 | DOI | MR | Zbl
[29] Kwak K., Pedrycz W., “Face recognition: A study in information fusion using fuzzy integral”, Patt. Recog. Lett., 26 (2005), 719–733 | DOI
[30] Kaleva O., “Fuzzy differential equations”, Fuzzy Sets Syst., 24:3, 1987 | MR | Zbl
[31] Kaleva O., Seikkala S., “On fuzzy metric spaces”, Fuzzy Sets Syst., 12 (1984), 215–229 | DOI | MR | Zbl
[32] Mesiar R., Kolesarova A., Calvo T., Komornakova M., “A review of aggregation functions”, Stud. Fuzz. Soft Comput., 220 (2008), 121–144 | DOI | Zbl
[33] Nguyen H. T., “A note on the extension principle for fuzzy sets”, J. Math. Anal. Appl., 64 (1978), 369–380 | DOI | MR | Zbl
[34] Roldin A. F. L., Bustince H., Fernandez J., Rodriguez I., Fardoun H., Lafuente J., “Affine construction methodology of aggregation functions”, Fuzzy Sets Syst., 414 (2021), 146–164 | DOI | MR
[35] Svistula M., “A note on the Choquet integral as a set function on a locally compact space”, Fuzzy Sets Syst., 430 (2022), 69–78 | DOI | MR