Integral fuzzy means in the aggregation problem for fuzzy information
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 138-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

For parametric systems of fuzzy numbers, we introduce and examine a class of aggregation integral operators for aggregation of fuzzy information.
Keywords: fuzzy function, fuzzy averaging integral operator, aggregation of fuzzy information.
@article{INTO_2023_226_a13,
     author = {V. L. Khatskevich},
     title = {Integral fuzzy means in the aggregation problem for fuzzy information},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {138--149},
     publisher = {mathdoc},
     volume = {226},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a13/}
}
TY  - JOUR
AU  - V. L. Khatskevich
TI  - Integral fuzzy means in the aggregation problem for fuzzy information
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 138
EP  - 149
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_226_a13/
LA  - ru
ID  - INTO_2023_226_a13
ER  - 
%0 Journal Article
%A V. L. Khatskevich
%T Integral fuzzy means in the aggregation problem for fuzzy information
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 138-149
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_226_a13/
%G ru
%F INTO_2023_226_a13
V. L. Khatskevich. Integral fuzzy means in the aggregation problem for fuzzy information. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 138-149. http://geodesic.mathdoc.fr/item/INTO_2023_226_a13/

[18] Volkova E. S., Gisin V. B., Nechetkie mnozhestva i myagkie vychisleniya v ekonomike i finansakh, KNORUS, M., 2019

[19] Dzhini K., Srednie velichiny, M., 1970

[20] Ledeneva T. M., Podvalnyi S. L., “Agregirovanie informatsii v otsenochnykh sistemakh”, Vestn. VGU. Ser. Sist. anal. inform. tekhnol., 2016, no. 4, 155–164

[21] Pegat A., Nechetkoe modelirovanie i upravlenie, Binom, M., 2015

[22] Smolyak S. A., Otsenki effektivnosti investitsionnykh proektov v usloviyakh riska i neopredelennosti, Nauka, M., 2002

[23] Khardi G., Poia D., Littlvud D., Neravenstva, MNTsNMO, M., 2008

[24] Khatskevich V. L., “O srednikh znacheniyakh nechetkikh chisel i ikh sistem”, Nechetkie sistemy i myagkie vychisleniya., 16:1 (2021), 5–-20

[25] Aumann R. J., “Integrals of set-valued functions”, J. Math. Anal. Appl., 12:1 (1965), 1–12 | DOI | MR | Zbl

[26] Beliakov G., Bustince H., Calvo T., A Practical Guide to Averaging Functions, Springer, Cham, 2016 | MR

[27] Diamond P., Kloeden P., “Metric spaces of fuzzy sets”, Fuzzy Sets Syst., 35:2 (1990), 241–249 | DOI | MR | Zbl

[28] Dubois D., Prade H., “The mean value of fuzzy number”, Fuzzy Sets Syst., 24:3 (1987), 279–300 | DOI | MR | Zbl

[29] Kwak K., Pedrycz W., “Face recognition: A study in information fusion using fuzzy integral”, Patt. Recog. Lett., 26 (2005), 719–733 | DOI

[30] Kaleva O., “Fuzzy differential equations”, Fuzzy Sets Syst., 24:3, 1987 | MR | Zbl

[31] Kaleva O., Seikkala S., “On fuzzy metric spaces”, Fuzzy Sets Syst., 12 (1984), 215–229 | DOI | MR | Zbl

[32] Mesiar R., Kolesarova A., Calvo T., Komornakova M., “A review of aggregation functions”, Stud. Fuzz. Soft Comput., 220 (2008), 121–144 | DOI | Zbl

[33] Nguyen H. T., “A note on the extension principle for fuzzy sets”, J. Math. Anal. Appl., 64 (1978), 369–380 | DOI | MR | Zbl

[34] Roldin A. F. L., Bustince H., Fernandez J., Rodriguez I., Fardoun H., Lafuente J., “Affine construction methodology of aggregation functions”, Fuzzy Sets Syst., 414 (2021), 146–164 | DOI | MR

[35] Svistula M., “A note on the Choquet integral as a set function on a locally compact space”, Fuzzy Sets Syst., 430 (2022), 69–78 | DOI | MR