Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_226_a12, author = {V. E. Fedorov and T. A. Zaharova}, title = {Quasilinear equations with fractional {Gerasimov--Caputo} derivative. {Sectorial} case}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {127--137}, publisher = {mathdoc}, volume = {226}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a12/} }
TY - JOUR AU - V. E. Fedorov AU - T. A. Zaharova TI - Quasilinear equations with fractional Gerasimov--Caputo derivative. Sectorial case JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 127 EP - 137 VL - 226 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_226_a12/ LA - ru ID - INTO_2023_226_a12 ER -
%0 Journal Article %A V. E. Fedorov %A T. A. Zaharova %T Quasilinear equations with fractional Gerasimov--Caputo derivative. Sectorial case %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 127-137 %V 226 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_226_a12/ %G ru %F INTO_2023_226_a12
V. E. Fedorov; T. A. Zaharova. Quasilinear equations with fractional Gerasimov--Caputo derivative. Sectorial case. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 127-137. http://geodesic.mathdoc.fr/item/INTO_2023_226_a12/
[1] Avilovich A. S., Gordievskikh D. M., Fedorov V. E., “Voprosy odnoznachnoi razreshimosti i priblizhennoi upravlyaemosti dlya lineinykh uravnenii drobnogo poryadka s gelderovoi pravoi chastyu”, Chelyab. fiz.-mat. zh., 60:2 (2020), 461–477 | MR
[2] Boyarintsev Yu. E., Metody resheniya vyrozhdennykh sistem obyknovennykh differentsialnykh uravnenii, Nauka, Novosibirsk, 1988
[3] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR
[4] Kostich M., Fedorov V. E., “Vyrozhdennye drobnye differentsialnye uravneniya v lokalno vypuklykh prostranstvakh s sigma-regulyarnoi paroi operatorov”, Ufim. mat. zh., 8:4 (2016), 100–113
[5] Kostich M., Fedorov V. E., “Razdelennye gipertsiklicheskie i razdelennye topologicheski peremeshivayuschie svoistva vyrozhdennykh drobnykh differentsialnykh uravnenii”, Izv. vuzov. Mat., 7 (2018), 36–53 | MR
[6] Plekhanova M. V., “Silnye resheniya nelineinogo vyrozhdennogo evolyutsionnogo uravneniya drobnogo poryadka”, Sib. zh. chist. prikl. mat., 16:3 (2016), 61–74 | Zbl
[7] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18 (1954), 3–50 | MR | Zbl
[8] Fedorov V. E., Avilovich A. S., “Zadacha tipa Koshi dlya vyrozhdennogo uravneniya s proizvodnoi Rimana—Liuvillya v sektorialnom sluchae”, Sib. mat. zh., 60:2 (2019), 461–477 | MR | Zbl
[9] Fedorov V. E., Gordievskikh D. M., “Razreshayuschie operatory vyrozhdennykh evolyutsionnykh uravnenii s drobnoi proizvodnoi po vremeni”, Izv. vuzov. Mat., 1 (2015), 71–83 | Zbl
[10] Fedorov V. E., Gordievskikh D. M., Plekhanova M. V., “Uravneniya v banakhovykh prostranstvakh s vyrozhdennym operatorom pod znakom drobnoi proizvodnoi”, Differ. uravn., 51:10 (2015), 1367–1375 | DOI | Zbl
[11] Fedorov V. E., Plekhanova M. V., Nazhimov R. R., “Lineinye vyrozhdennye evolyutsionnye uravneniya s drobnoi proizvodnoi Rimana—Liuvillya”, Sib. mat. zh., 59:1 (2018), 171–184 | MR | Zbl
[12] Fedorov V. E., Romanova E. A., “Neodnorodnoe evolyutsionnoe uravnenie drobnogo poryadka v sektorialnom sluchae”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 149 (2018), 103–112
[13] Fedorov V. E., Romanova E. A., Debush A., “Analiticheskie v sektore razreshayuschie semeistva operatorov vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Sib. zh. chist. prikl. mat., 16:2 (2016), 93–107 | Zbl
[14] Chistyakov V. F., Algebraicheski-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996
[15] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, Eindhoven Univ. Technol., Eindhoven, 2001 | MR | Zbl
[16] Caroll R. W., Showalter R. E., Singular and Degenerate Cauchy Problems, Academic Press, New York–San Francisco–London, 1976 | MR
[17] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York–Basel–Hong Kong, 1999 | MR | Zbl
[18] Fedorov V. E., Avilovich A. S., “Semilinear fractional-order evolution equations of Sobolev type in the sectorial case”, Complex Var. Ellipt. Equations., 66:6–7 (2021), 1108–1121 | DOI | MR | Zbl
[19] Fedorov V. E., Avilovich A. S., Borel L. V., “Initial problems for semilinear degenerate evolution equations of fractional order in the sectorial case”, Springer Proc. Math. Stat., 292 (2019), 41–62 | MR | Zbl
[20] Hassard B. D., Kazarinoff N. D., Wan Y. H., Theory and Applications of Hopf Bifurcation, Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl
[21] Kostić M., Abstract Volterra Integro-Differential Equations, CRC Press, Boca Raton, 2015 | MR | Zbl
[22] Plekhanova M. V., “Sobolev type equations of time-fractional order with periodical boundary conditions”, AIP Conf. Proc., 1759 (2016), 020101 | DOI
[23] Plekhanova M. V., “Nonlinear equations with degenerate operator at fractional Caputo derivative”, Math. Meth. Appl. Sci., 40:17 (2017), 6138–6146 | DOI | MR | Zbl
[24] Plekhanova M. V., Baybulatova G. D., “Semilinear equations in Banach spaces with lower fractional derivatives”, Springer Proc. Math. Stat., 292 (2019), 81–93 | MR | Zbl
[25] Prüss J., Evolutionary Integral Equations and Applications, Springer, Basel, 1993 | MR
[26] Pyatkov S. G., Operator Theory. Nonclassical Problems, VSP, Utrecht–Boston–Colonia–Tokyo, 2002 | MR | Zbl
[27] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt Method in Nonlinear Analysis and Applications, Kluwer Academic, Dordrecht, 2002 | MR
[28] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR | Zbl