Quasilinear equations with fractional Gerasimov--Caputo derivative. Sectorial case
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 127-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study initial-value problems for quasilinear equations with Gerasimov–Caputo fractional derivatives in Banach spaces whose linear part has an analytic resolving family of operators in the sector. The nonlinear operator is assumed to be a locally Lipschitz operator. We consider equations that are solved with respect to the highest derivative and equations containing a degenerate linear operator acting on the highest derivative. The theorem on the unique solvability of the Cauchy problem proved in the paper is used for the study of the unique solvability of the Showalter–Sidorov problem for degenerate equations. Abstract results are applied to the initial-boundary-value problem for partial differential equations that are not solvable with respect to the highest fractional derivative in time.
Keywords: quasilinear equation, Gerasimov–Caputo fractional derivative, sectorial operator, Cauchy problem, initial boundary value problem.
@article{INTO_2023_226_a12,
     author = {V. E. Fedorov and T. A. Zaharova},
     title = {Quasilinear equations with fractional {Gerasimov--Caputo} derivative. {Sectorial} case},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {127--137},
     publisher = {mathdoc},
     volume = {226},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a12/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - T. A. Zaharova
TI  - Quasilinear equations with fractional Gerasimov--Caputo derivative. Sectorial case
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 127
EP  - 137
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_226_a12/
LA  - ru
ID  - INTO_2023_226_a12
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A T. A. Zaharova
%T Quasilinear equations with fractional Gerasimov--Caputo derivative. Sectorial case
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 127-137
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_226_a12/
%G ru
%F INTO_2023_226_a12
V. E. Fedorov; T. A. Zaharova. Quasilinear equations with fractional Gerasimov--Caputo derivative. Sectorial case. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 127-137. http://geodesic.mathdoc.fr/item/INTO_2023_226_a12/

[1] Avilovich A. S., Gordievskikh D. M., Fedorov V. E., “Voprosy odnoznachnoi razreshimosti i priblizhennoi upravlyaemosti dlya lineinykh uravnenii drobnogo poryadka s gelderovoi pravoi chastyu”, Chelyab. fiz.-mat. zh., 60:2 (2020), 461–477 | MR

[2] Boyarintsev Yu. E., Metody resheniya vyrozhdennykh sistem obyknovennykh differentsialnykh uravnenii, Nauka, Novosibirsk, 1988

[3] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR

[4] Kostich M., Fedorov V. E., “Vyrozhdennye drobnye differentsialnye uravneniya v lokalno vypuklykh prostranstvakh s sigma-regulyarnoi paroi operatorov”, Ufim. mat. zh., 8:4 (2016), 100–113

[5] Kostich M., Fedorov V. E., “Razdelennye gipertsiklicheskie i razdelennye topologicheski peremeshivayuschie svoistva vyrozhdennykh drobnykh differentsialnykh uravnenii”, Izv. vuzov. Mat., 7 (2018), 36–53 | MR

[6] Plekhanova M. V., “Silnye resheniya nelineinogo vyrozhdennogo evolyutsionnogo uravneniya drobnogo poryadka”, Sib. zh. chist. prikl. mat., 16:3 (2016), 61–74 | Zbl

[7] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18 (1954), 3–50 | MR | Zbl

[8] Fedorov V. E., Avilovich A. S., “Zadacha tipa Koshi dlya vyrozhdennogo uravneniya s proizvodnoi Rimana—Liuvillya v sektorialnom sluchae”, Sib. mat. zh., 60:2 (2019), 461–477 | MR | Zbl

[9] Fedorov V. E., Gordievskikh D. M., “Razreshayuschie operatory vyrozhdennykh evolyutsionnykh uravnenii s drobnoi proizvodnoi po vremeni”, Izv. vuzov. Mat., 1 (2015), 71–83 | Zbl

[10] Fedorov V. E., Gordievskikh D. M., Plekhanova M. V., “Uravneniya v banakhovykh prostranstvakh s vyrozhdennym operatorom pod znakom drobnoi proizvodnoi”, Differ. uravn., 51:10 (2015), 1367–1375 | DOI | Zbl

[11] Fedorov V. E., Plekhanova M. V., Nazhimov R. R., “Lineinye vyrozhdennye evolyutsionnye uravneniya s drobnoi proizvodnoi Rimana—Liuvillya”, Sib. mat. zh., 59:1 (2018), 171–184 | MR | Zbl

[12] Fedorov V. E., Romanova E. A., “Neodnorodnoe evolyutsionnoe uravnenie drobnogo poryadka v sektorialnom sluchae”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 149 (2018), 103–112

[13] Fedorov V. E., Romanova E. A., Debush A., “Analiticheskie v sektore razreshayuschie semeistva operatorov vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Sib. zh. chist. prikl. mat., 16:2 (2016), 93–107 | Zbl

[14] Chistyakov V. F., Algebraicheski-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996

[15] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, Eindhoven Univ. Technol., Eindhoven, 2001 | MR | Zbl

[16] Caroll R. W., Showalter R. E., Singular and Degenerate Cauchy Problems, Academic Press, New York–San Francisco–London, 1976 | MR

[17] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York–Basel–Hong Kong, 1999 | MR | Zbl

[18] Fedorov V. E., Avilovich A. S., “Semilinear fractional-order evolution equations of Sobolev type in the sectorial case”, Complex Var. Ellipt. Equations., 66:6–7 (2021), 1108–1121 | DOI | MR | Zbl

[19] Fedorov V. E., Avilovich A. S., Borel L. V., “Initial problems for semilinear degenerate evolution equations of fractional order in the sectorial case”, Springer Proc. Math. Stat., 292 (2019), 41–62 | MR | Zbl

[20] Hassard B. D., Kazarinoff N. D., Wan Y. H., Theory and Applications of Hopf Bifurcation, Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl

[21] Kostić M., Abstract Volterra Integro-Differential Equations, CRC Press, Boca Raton, 2015 | MR | Zbl

[22] Plekhanova M. V., “Sobolev type equations of time-fractional order with periodical boundary conditions”, AIP Conf. Proc., 1759 (2016), 020101 | DOI

[23] Plekhanova M. V., “Nonlinear equations with degenerate operator at fractional Caputo derivative”, Math. Meth. Appl. Sci., 40:17 (2017), 6138–6146 | DOI | MR | Zbl

[24] Plekhanova M. V., Baybulatova G. D., “Semilinear equations in Banach spaces with lower fractional derivatives”, Springer Proc. Math. Stat., 292 (2019), 81–93 | MR | Zbl

[25] Prüss J., Evolutionary Integral Equations and Applications, Springer, Basel, 1993 | MR

[26] Pyatkov S. G., Operator Theory. Nonclassical Problems, VSP, Utrecht–Boston–Colonia–Tokyo, 2002 | MR | Zbl

[27] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt Method in Nonlinear Analysis and Applications, Kluwer Academic, Dordrecht, 2002 | MR

[28] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR | Zbl