Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_226_a1, author = {I. N. Belyaeva and I. K. Kirichenko and N. N. Chekanova}, title = {Normalization and quantization of {Hamiltonian} systems using computer algebra}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {16--22}, publisher = {mathdoc}, volume = {226}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a1/} }
TY - JOUR AU - I. N. Belyaeva AU - I. K. Kirichenko AU - N. N. Chekanova TI - Normalization and quantization of Hamiltonian systems using computer algebra JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 16 EP - 22 VL - 226 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_226_a1/ LA - ru ID - INTO_2023_226_a1 ER -
%0 Journal Article %A I. N. Belyaeva %A I. K. Kirichenko %A N. N. Chekanova %T Normalization and quantization of Hamiltonian systems using computer algebra %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 16-22 %V 226 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_226_a1/ %G ru %F INTO_2023_226_a1
I. N. Belyaeva; I. K. Kirichenko; N. N. Chekanova. Normalization and quantization of Hamiltonian systems using computer algebra. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 16-22. http://geodesic.mathdoc.fr/item/INTO_2023_226_a1/
[1] Birkgof Dzh., Dinamicheskie sistemy, RKhD, M.-Izhevsk, 2002
[2] Born M., Iordan P., “O kvantovoi mekhanike”, Usp. fiz. nauk., 122:8 (1977), 586–611 | DOI | MR
[3] Veil G., Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986
[4] Geizenberg V., “O kvantovoteoreticheskom istolkovanii kinematicheskikh i mekhanicheskikh sootnoshenii”, Usp. fiz. nauk., 122:4 (1977), 574–586
[5] Grebenikov E. A., Metod usredneniya v prikladnykh zadachakh, Nauka, M., 1986
[6] Banerjee K., “General anharmonic oscillator”, Proc. Roy. Soc., 364 (1978), 265–275 | MR
[7] Basios V., Chekanov N. A., Markovski B. L., Rostovtsev V. A.,Vinitsky S. I., “REDUCE program for the normalization of polynomial Hamiltonians”, Comp. Phys. Commun., 90 (1995), 355–368 | DOI | Zbl
[8] Chekanov N. A., “Quantization of the normal form of Birkhoff–Gustavson”, Nucl. Phys., 50:8 (1989), 344–346 | MR
[9] Fedak W. A., Prentis J. J., “The 1925 Born and Jordan paper “On quantum mechanics””, Am. J. Phys., 77 (2009), 128–139 | DOI | MR
[10] Gosson M. A., “Born–Jordan quantization and the uncertainty principle”, J. Phys. A: Math. Theor., 46 (2013), 445–462 | DOI | MR
[11] Gustavson F. G., “On constructing formal integral of a Hamiltonian system near an equilibrium point”, Astron. J., 71:8 (1966), 670–686 | DOI
[12] Kauffmann S. K., “Unambiguous quantization from the maximum classical correspondence that is self-consistent: the slightly stronger canonical commutation rule Dirac missed”, Found. Phys., 41 (2011), 805–918 | DOI | MR
[13] McCoy N. H., “On the function in quantum mechanics which corresponds to a given function in classical mechanics”, Proc. Natl. Acad. Sci. U.S.A., 18 (1932), 674–676 | DOI | MR | Zbl
[14] Razavy M., Heisenberg's Quantum Mechanics, World Scientific, Singapore, 2011
[15] Taseli H., “On the exact solution of the Schroedinger equation with a quartic anharmonicity”, Int. J. Quant. Chem., 57 (1996), 63–71 | 3.0.CO;2-X class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[16] Taseli H., Demiralp M., “Studies on algebraic methods to solve linear eigenvalue problems: generalised anharmonic oscillators”, J. Phys. A: Math. Gen., 21 (1988), 3903–3919 | DOI | MR | Zbl
[17] Weyl H., “Quantenmechanik und Gruppentheorie”, Z. Phys., 46 (1927), 1–46. | DOI | MR