Normalization and quantization of Hamiltonian systems using computer algebra
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 16-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The normalization of Hamiltonian systems is described, i.e., the reduction of a classical Hamilton function using canonical transformations to a simpler form called the Birkhoff–Gustavson normal form. The classical normal form is obtained according to the Born–Jordan and Weyl–McCoy rules, its quantum analogs are constructed, for which the eigenvalue problem is solved, and approximate formulas for the energy spectrum are found. For partial values of the parameters of quantum normal forms, numerical calculations of the lower energy levels were carried out using these formulas.
Keywords: Hamilton function, canonical transformations, normal form, Weyl–McCoy quantization rule, quantum normal form, energy spectrum, symbolic numerical calculations, computer simulation.
Mots-clés : Born–Jordan quantization rule
@article{INTO_2023_226_a1,
     author = {I. N. Belyaeva and I. K. Kirichenko and N. N. Chekanova},
     title = {Normalization and quantization of {Hamiltonian} systems using computer algebra},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {16--22},
     publisher = {mathdoc},
     volume = {226},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a1/}
}
TY  - JOUR
AU  - I. N. Belyaeva
AU  - I. K. Kirichenko
AU  - N. N. Chekanova
TI  - Normalization and quantization of Hamiltonian systems using computer algebra
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 16
EP  - 22
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_226_a1/
LA  - ru
ID  - INTO_2023_226_a1
ER  - 
%0 Journal Article
%A I. N. Belyaeva
%A I. K. Kirichenko
%A N. N. Chekanova
%T Normalization and quantization of Hamiltonian systems using computer algebra
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 16-22
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_226_a1/
%G ru
%F INTO_2023_226_a1
I. N. Belyaeva; I. K. Kirichenko; N. N. Chekanova. Normalization and quantization of Hamiltonian systems using computer algebra. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 16-22. http://geodesic.mathdoc.fr/item/INTO_2023_226_a1/

[1] Birkgof Dzh., Dinamicheskie sistemy, RKhD, M.-Izhevsk, 2002

[2] Born M., Iordan P., “O kvantovoi mekhanike”, Usp. fiz. nauk., 122:8 (1977), 586–611 | DOI | MR

[3] Veil G., Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986

[4] Geizenberg V., “O kvantovoteoreticheskom istolkovanii kinematicheskikh i mekhanicheskikh sootnoshenii”, Usp. fiz. nauk., 122:4 (1977), 574–586

[5] Grebenikov E. A., Metod usredneniya v prikladnykh zadachakh, Nauka, M., 1986

[6] Banerjee K., “General anharmonic oscillator”, Proc. Roy. Soc., 364 (1978), 265–275 | MR

[7] Basios V., Chekanov N. A., Markovski B. L., Rostovtsev V. A.,Vinitsky S. I., “REDUCE program for the normalization of polynomial Hamiltonians”, Comp. Phys. Commun., 90 (1995), 355–368 | DOI | Zbl

[8] Chekanov N. A., “Quantization of the normal form of Birkhoff–Gustavson”, Nucl. Phys., 50:8 (1989), 344–346 | MR

[9] Fedak W. A., Prentis J. J., “The 1925 Born and Jordan paper “On quantum mechanics””, Am. J. Phys., 77 (2009), 128–139 | DOI | MR

[10] Gosson M. A., “Born–Jordan quantization and the uncertainty principle”, J. Phys. A: Math. Theor., 46 (2013), 445–462 | DOI | MR

[11] Gustavson F. G., “On constructing formal integral of a Hamiltonian system near an equilibrium point”, Astron. J., 71:8 (1966), 670–686 | DOI

[12] Kauffmann S. K., “Unambiguous quantization from the maximum classical correspondence that is self-consistent: the slightly stronger canonical commutation rule Dirac missed”, Found. Phys., 41 (2011), 805–918 | DOI | MR

[13] McCoy N. H., “On the function in quantum mechanics which corresponds to a given function in classical mechanics”, Proc. Natl. Acad. Sci. U.S.A., 18 (1932), 674–676 | DOI | MR | Zbl

[14] Razavy M., Heisenberg's Quantum Mechanics, World Scientific, Singapore, 2011

[15] Taseli H., “On the exact solution of the Schroedinger equation with a quartic anharmonicity”, Int. J. Quant. Chem., 57 (1996), 63–71 | 3.0.CO;2-X class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[16] Taseli H., Demiralp M., “Studies on algebraic methods to solve linear eigenvalue problems: generalised anharmonic oscillators”, J. Phys. A: Math. Gen., 21 (1988), 3903–3919 | DOI | MR | Zbl

[17] Weyl H., “Quantenmechanik und Gruppentheorie”, Z. Phys., 46 (1927), 1–46. | DOI | MR