On the decay rate of solutions to the stationary Schr\"odinger equation with a potential depending on one variable
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 115-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1982, E. M. Landis posed the problem of exact estimates for the exponential decay rate of solutions to the stationary Schrödinger equation. A few years later, this problem in its original formulation was solved by the Voronezh mathematician V. Z. Meshkov. He constructed an example of a solution that decreases superlinearly at infinity, which gives a negative answer to the original question in Landis' problem. In this paper, we prove that for some potentials of a special form, nevertheless, the answer to the question in Landis' problem may be positive. Some generalizations and modern results in this direction are also presented.
Keywords: stationary Schrödinger equation, Sturm–Liouville operator, transformation operator, Landis problem, a priori estimate, Neumann series, Bessel function.
@article{INTO_2023_225_a9,
     author = {S. M. Sitnik},
     title = {On the decay rate of solutions to the stationary {Schr\"odinger} equation with a potential depending on one variable},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {115--122},
     publisher = {mathdoc},
     volume = {225},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a9/}
}
TY  - JOUR
AU  - S. M. Sitnik
TI  - On the decay rate of solutions to the stationary Schr\"odinger equation with a potential depending on one variable
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 115
EP  - 122
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_225_a9/
LA  - ru
ID  - INTO_2023_225_a9
ER  - 
%0 Journal Article
%A S. M. Sitnik
%T On the decay rate of solutions to the stationary Schr\"odinger equation with a potential depending on one variable
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 115-122
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_225_a9/
%G ru
%F INTO_2023_225_a9
S. M. Sitnik. On the decay rate of solutions to the stationary Schr\"odinger equation with a potential depending on one variable. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 115-122. http://geodesic.mathdoc.fr/item/INTO_2023_225_a9/

[6] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. T. 1, Nauka, M., 1973

[7] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. T. 2, Nauka, M., 1966 | MR

[8] Katrakhov V. V., Sitnik S. M., “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovr. mat. Fundam. napr., 64:2 (2018), 211–426 | MR

[9] Levin B. Ya., “Preobrazovanie tipa Fure i Laplasa pri pomoschi reshenii differentsialnogo uravneniya vtorogo poryadka”, Dokl. AN SSSR., 106 (1956)

[10] Marchenko V. A., Spektralnaya teoriya operatorov Shturma—Liuvillya, Naukova dumka, Kiev, 1972

[11] Meshkov V. Z., “Vesovye differentsialnye neravenstva i ikh primenenie dlya otsenok skorosti ubyvaniya na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 190 (1989), 139–158

[12] Meshkov V. Z, “O vozmozhnoi skorosti ubyvaniya na beskonechnosti reshenii uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Mat. sb., 182:3 (1991), 364–383 | Zbl

[13] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[14] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957

[15] Oleinik O. A., Shubin M. A., “Differentsialnye uravneniya i ikh prilozheniya”, Usp. mat. nauk., 37:6 (228) (1982), 278–281

[16] Sitnik S. M., “Ob odnom integralnom uravnenii v teorii operatorov preobrazovaniya”, Zh. vychisl. mat. mat. fiz., 60:8 (2020), 1428–1438 | DOI | MR | Zbl

[17] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019

[18] Bourgain J., Kenig C. E., “On localization in the continuous Anderson–Bernoulli model in higher dimension”, Invent. Math., 161:2 (2005), 389–426 | DOI | MR | Zbl

[19] Calderon A. P., “Uniquenes in the Cauchy problem for partial differential equations”, Am. J. Math., 80 (1958), 16–36 | DOI | MR | Zbl

[20] Davey B., Kenig C., Wang J. N., “The Landis conjecture for variable coeffcient second-order elliptic PDEs”, Trans. Am. Math. Soc., 369:11 (2017), 8209–8237 | DOI | MR | Zbl

[21] Drabek P., Kufner A., Nicolosi F., Quasilinear elliptic equations with degenerations and singularities, de Gruyter, Berlin–New York, 1997 | MR | Zbl

[22] Kenig C. E., “Some recent quantitative unique continuation theorems”, Sémin. Équ. Dériv. Partielles., Ec. Polytech. Cent. Math., Palaiseau, 2006, 1–10 | MR

[23] Kenig C. E., Silvestre L., Wang J. N., “On Landis' conjecture in the plane”, Commun. Part. Differ. Equ., 40:4 (2015), 766–789 | DOI | MR | Zbl

[24] Lindqvist P., Notes on the $p$-Laplace equation, Norwegian Univ. Sci. Techn., Trondheim, Norway, 2006 | MR

[25] Morrey C. B., “Second order elliptic systems of differential equations”, Proc. Natl. Acad. U.S.A., 39 (1953), 201–206 | DOI | MR | Zbl

[26] Rossi L., The Landis conjecture with sharp rate of decay, arXiv: 1807.00341 [math.APC]

[27] Shishkina E. L., Sitnik S. M., Transmutations, singular and fractional differential equations with applications to mathematical physics, Elsevier, Amsterdam, 2020 | MR | Zbl