Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_225_a8, author = {S. S. Postnov}, title = {On the search for a time-optimal boundary control using the method of moments for systems governed by the diffusion-wave equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {108--114}, publisher = {mathdoc}, volume = {225}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a8/} }
TY - JOUR AU - S. S. Postnov TI - On the search for a time-optimal boundary control using the method of moments for systems governed by the diffusion-wave equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 108 EP - 114 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_225_a8/ LA - ru ID - INTO_2023_225_a8 ER -
%0 Journal Article %A S. S. Postnov %T On the search for a time-optimal boundary control using the method of moments for systems governed by the diffusion-wave equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 108-114 %V 225 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_225_a8/ %G ru %F INTO_2023_225_a8
S. S. Postnov. On the search for a time-optimal boundary control using the method of moments for systems governed by the diffusion-wave equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 108-114. http://geodesic.mathdoc.fr/item/INTO_2023_225_a8/
[1] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965
[2] Gerasimov A. N., “Obobschenie lineinykh zakonov deformirovaniya i ego primenenie k zadacham vnutrennego treniya”, Prikl. mat. mekh., 12,:3 (1948), 251–260 | Zbl
[3] Dzhrbashyan M. M., Nersesyan A. B., “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN ArmSSR. Mat., 3:1 (1968), 3–29 | MR | Zbl
[4] Kubyshkin V. A., Postnov S. C., “Optimalnoe po bystrodeistviyu granichnoe upravlenie dlya sistem, opisyvaemykh uravneniem diffuzii drobnogo poryadka”, Avtomat. telemekh., 2018, no. 5, 137–152 | Zbl
[5] Postnov S. C., “Optimalnoe upravlenie dlya sistem, modeliruemykh diffuzionno-volnovym uravneniem”, Vladikavkaz. mat. zh., 24:3 (2022), 108–119 | DOI | MR | Zbl
[6] Azamov A. A., Bakhramov J. A., Akhmedov O. S., “On the Chernous'ko time-optimal problem for the equation of heat conductivity in a rod”, Ural Math. J., 5:1 (2019), 13-–23 | DOI | MR | Zbl
[7] Caputo M., “Linear models of dissipation whose Q is almost frequency independent, II”, Geophys. J. Roy. Astron. Soc., 13 (1967), 529–539 | DOI
[8] Gorenflo R., Kilbas A. A., Mainardi F. et al., Mittag–Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014 | MR | Zbl
[9] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl
[10] Mophou G. M., “Optimal control of fractional diffusion equation”, Comp. Math. Appl., 61:1 (2010), 68–78 | DOI | MR
[11] Postnov S., “Optimal damping problem with additional terminal state condition in diffusion-wave processes”, Proc. 2 Int. Conf. on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, IEEE, 2021, 1–5
[12] Postnov S., “Optimal damping problem for diffusion-wave equation”, Stability and Control Processes, eds. Smirnov N., Golovkina A., Springer, Cham, 2022, 127–135 | DOI | MR | Zbl
[13] Tang Q., Ma Q., “Variational formulation and optimal control of fractional diffusion equations with Caputo derivatives”, Adv. Differ. Equations., 2015 (2015), 283 | DOI | MR
[14] Zhou Z., Gong W., “Finite element approximation of optimal control problems governed by time fractional diffusion equation”, Comp. Math. Appl., 71:1 (2016), 301–318 | DOI | MR | Zbl