On the search for a time-optimal boundary control using the method of moments for systems governed by the diffusion-wave equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 108-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a system described by a one-dimensional, inhomogeneous diffusion-wave equation on a segment, two types of optimal boundary control problems are considered: the problem of finding a control with a minimum norm for a given control time and the problem of finding a control that brings the system to a given state in a minimum time under a given constraint on the norm of the control. Various ways of specifying conditions on the final state are considered. The finite-dimensional $l$-problem of moments is analyzed, to which the optimal control problem can be reduced. We show that under the conditions of well-posedness and solvability of this problem, the problem of finding a control with a minimum norm always has a solution, while the problem of finding a control with a minimum transition time may not have a solution.
Keywords: optimal control, Caputo derivative, $l$-moment problem.
Mots-clés : diffusion-wave equation
@article{INTO_2023_225_a8,
     author = {S. S. Postnov},
     title = {On the search for a time-optimal boundary control using the method of moments for systems governed by the diffusion-wave equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {108--114},
     publisher = {mathdoc},
     volume = {225},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a8/}
}
TY  - JOUR
AU  - S. S. Postnov
TI  - On the search for a time-optimal boundary control using the method of moments for systems governed by the diffusion-wave equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 108
EP  - 114
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_225_a8/
LA  - ru
ID  - INTO_2023_225_a8
ER  - 
%0 Journal Article
%A S. S. Postnov
%T On the search for a time-optimal boundary control using the method of moments for systems governed by the diffusion-wave equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 108-114
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_225_a8/
%G ru
%F INTO_2023_225_a8
S. S. Postnov. On the search for a time-optimal boundary control using the method of moments for systems governed by the diffusion-wave equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 108-114. http://geodesic.mathdoc.fr/item/INTO_2023_225_a8/

[1] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965

[2] Gerasimov A. N., “Obobschenie lineinykh zakonov deformirovaniya i ego primenenie k zadacham vnutrennego treniya”, Prikl. mat. mekh., 12,:3 (1948), 251–260 | Zbl

[3] Dzhrbashyan M. M., Nersesyan A. B., “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN ArmSSR. Mat., 3:1 (1968), 3–29 | MR | Zbl

[4] Kubyshkin V. A., Postnov S. C., “Optimalnoe po bystrodeistviyu granichnoe upravlenie dlya sistem, opisyvaemykh uravneniem diffuzii drobnogo poryadka”, Avtomat. telemekh., 2018, no. 5, 137–152 | Zbl

[5] Postnov S. C., “Optimalnoe upravlenie dlya sistem, modeliruemykh diffuzionno-volnovym uravneniem”, Vladikavkaz. mat. zh., 24:3 (2022), 108–119 | DOI | MR | Zbl

[6] Azamov A. A., Bakhramov J. A., Akhmedov O. S., “On the Chernous'ko time-optimal problem for the equation of heat conductivity in a rod”, Ural Math. J., 5:1 (2019), 13-–23 | DOI | MR | Zbl

[7] Caputo M., “Linear models of dissipation whose Q is almost frequency independent, II”, Geophys. J. Roy. Astron. Soc., 13 (1967), 529–539 | DOI

[8] Gorenflo R., Kilbas A. A., Mainardi F. et al., Mittag–Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014 | MR | Zbl

[9] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[10] Mophou G. M., “Optimal control of fractional diffusion equation”, Comp. Math. Appl., 61:1 (2010), 68–78 | DOI | MR

[11] Postnov S., “Optimal damping problem with additional terminal state condition in diffusion-wave processes”, Proc. 2 Int. Conf. on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, IEEE, 2021, 1–5

[12] Postnov S., “Optimal damping problem for diffusion-wave equation”, Stability and Control Processes, eds. Smirnov N., Golovkina A., Springer, Cham, 2022, 127–135 | DOI | MR | Zbl

[13] Tang Q., Ma Q., “Variational formulation and optimal control of fractional diffusion equations with Caputo derivatives”, Adv. Differ. Equations., 2015 (2015), 283 | DOI | MR

[14] Zhou Z., Gong W., “Finite element approximation of optimal control problems governed by time fractional diffusion equation”, Comp. Math. Appl., 71:1 (2016), 301–318 | DOI | MR | Zbl