On main equation for inverse Sturm--Liouville operator with discontinuous coefficient
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 73-86

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, a boundary-value problem for the Sturm–Liouville operator with discontinuous coefficient is examined. The main equation for the inverse problem for the boundary-value problem is obtained and the uniqueness of its solution is proved.
Mots-clés : main equation
Keywords: discontinuous Sturm–Liouville operator, inverse problem.
@article{INTO_2023_225_a6,
     author = {D. Karahan and Kh. R. Mamedov and I. F. Hashimoglu},
     title = {On main equation for inverse {Sturm--Liouville} operator with discontinuous coefficient},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {73--86},
     publisher = {mathdoc},
     volume = {225},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a6/}
}
TY  - JOUR
AU  - D. Karahan
AU  - Kh. R. Mamedov
AU  - I. F. Hashimoglu
TI  - On main equation for inverse Sturm--Liouville operator with discontinuous coefficient
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 73
EP  - 86
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_225_a6/
LA  - ru
ID  - INTO_2023_225_a6
ER  - 
%0 Journal Article
%A D. Karahan
%A Kh. R. Mamedov
%A I. F. Hashimoglu
%T On main equation for inverse Sturm--Liouville operator with discontinuous coefficient
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 73-86
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_225_a6/
%G ru
%F INTO_2023_225_a6
D. Karahan; Kh. R. Mamedov; I. F. Hashimoglu. On main equation for inverse Sturm--Liouville operator with discontinuous coefficient. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 73-86. http://geodesic.mathdoc.fr/item/INTO_2023_225_a6/