On main equation for inverse Sturm--Liouville operator with discontinuous coefficient
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 73-86
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, a boundary-value problem for the Sturm–Liouville operator with discontinuous coefficient is examined. The main equation for the inverse problem for the boundary-value problem is obtained and the uniqueness of its solution is proved.
Mots-clés :
main equation
Keywords: discontinuous Sturm–Liouville operator, inverse problem.
Keywords: discontinuous Sturm–Liouville operator, inverse problem.
@article{INTO_2023_225_a6,
author = {D. Karahan and Kh. R. Mamedov and I. F. Hashimoglu},
title = {On main equation for inverse {Sturm--Liouville} operator with discontinuous coefficient},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {73--86},
publisher = {mathdoc},
volume = {225},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a6/}
}
TY - JOUR AU - D. Karahan AU - Kh. R. Mamedov AU - I. F. Hashimoglu TI - On main equation for inverse Sturm--Liouville operator with discontinuous coefficient JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 73 EP - 86 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_225_a6/ LA - ru ID - INTO_2023_225_a6 ER -
%0 Journal Article %A D. Karahan %A Kh. R. Mamedov %A I. F. Hashimoglu %T On main equation for inverse Sturm--Liouville operator with discontinuous coefficient %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 73-86 %V 225 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_225_a6/ %G ru %F INTO_2023_225_a6
D. Karahan; Kh. R. Mamedov; I. F. Hashimoglu. On main equation for inverse Sturm--Liouville operator with discontinuous coefficient. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 73-86. http://geodesic.mathdoc.fr/item/INTO_2023_225_a6/