Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_225_a4, author = {A. A. Golubkov}, title = {Quasi-nonmonodromic systems of first-order differential equations with a parameter}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {59--68}, publisher = {mathdoc}, volume = {225}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a4/} }
TY - JOUR AU - A. A. Golubkov TI - Quasi-nonmonodromic systems of first-order differential equations with a parameter JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 59 EP - 68 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_225_a4/ LA - ru ID - INTO_2023_225_a4 ER -
%0 Journal Article %A A. A. Golubkov %T Quasi-nonmonodromic systems of first-order differential equations with a parameter %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 59-68 %V 225 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_225_a4/ %G ru %F INTO_2023_225_a4
A. A. Golubkov. Quasi-nonmonodromic systems of first-order differential equations with a parameter. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 59-68. http://geodesic.mathdoc.fr/item/INTO_2023_225_a4/
[1] Bolibrukh A. A., “Differentsialnye uravneniya s meromorfnymi koeffitsientami”, Sovr. probl. mat., 2003, no. 1, 29–-82 | DOI | MR | Zbl
[2] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968
[3] Golubkov A. A., “Obratnaya zadacha dlya operatorov Shturma––Liuvillya v kompleksnoi ploskosti”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inf., 18:2 (2018), 144–-156 | MR | Zbl
[4] Golubkov A. A., “Kraevaya zadacha dlya uravneniya Shturma––Liuvillya s kusochno-tselym potentsialom na krivoi i usloviyami razryva reshenii”, Sib. elektron. mat. izv., 16 (2019), 1005–-1027 | Zbl
[5] Golubkov A. A., “Spektr operatora Shturma––Liuvillya na krivoi s parametrom v kraevykh usloviyakh i usloviyakh razryvov reshenii”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 193 (2021), 45–-68 | DOI
[6] Ishkin Kh. K., “O kriterii odnoznachnosti reshenii uravneniya Shturma––Liuvillya”, Mat. zametki., 84:4 (2008), 552–-566 | DOI | Zbl
[7] Ishkin Kh. K., “O kriterii bezmonodromnosti uravneniya Shturma––Liuvillya”, Mat. zametki., 94:4 (2013), 552–-568 | DOI | Zbl
[8] Ishkin Kh. K., Akhmetshina A. D., “O klasse potentsialov s trivialnoi monodromiei”, Vestn. Kazakh. nats. un-ta. Ser. mat. mekh. inform., 99:3 (2018), 43–-52
[9] Ishkin Kh. K., Davletova L. G., “Regulyarizovannyi sled operatora Shturma––Liuvillya na krivoi s regulyarnoi osobennostyu na khorde”, Differ. uravn., 56:10 (2020), 1291–-1303 | DOI
[10] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971
[11] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1981
[12] Markushevich A. M., Teoriya analiticheskikh funktsii. T. 2, Nauka, M., 1968 | MR
[13] Oblomkov A. A., “Bezmonodromnye operatory Shredingera s kvadratichno rastuschim potentsialom”, Teor. mat. fiz., 121:3 (1999), 374–-386 | DOI | MR | Zbl
[14] Kheding Dzh., Vvedenie v metod fazovykh integralov (metod VKB), Mir, M., 1965
[15] Duistermaat J. J., Grünbaum F. A., “Differential equations in the spectral parameter”, Commun. Math. Phys., 103:2 (1986), 177–-240 | DOI | MR | Zbl
[16] Gibbons J., Veselov A. P., “On the rational monodromy-free potentials with sextic growth”, J. Math. Phys., 50:1 (2009), 013513 | DOI | MR | Zbl
[17] Golubkov A. A., Kuryshova Yu. V., “Inverse problem for Sturm–-Liouville operators on a curve”, Tamkang J. Math., 50:3 (2019), 349–-359 | DOI | MR | Zbl
[18] Golubkov A. A., “Inverse problem for the Sturm–-Liouville equation with piecewise entire potential and piecewise constant weight on a curve”, Sib. elektron. mat. izv., 18:2 (2021), 951–-974 | MR | Zbl
[19] Langer R. E., “The boundary problem of an ordinary linear differential system in the complex domain”, Trans. Am. Math. Soc., 46 (1939), 151–-190 | DOI | MR | Zbl