Quasi-nonmonodromic systems of first-order differential equations with a parameter
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 59-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : nonmonodromic singular point, quasi-ninmonodromic singular point.
@article{INTO_2023_225_a4,
     author = {A. A. Golubkov},
     title = {Quasi-nonmonodromic systems of first-order differential equations with a parameter},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {59--68},
     publisher = {mathdoc},
     volume = {225},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a4/}
}
TY  - JOUR
AU  - A. A. Golubkov
TI  - Quasi-nonmonodromic systems of first-order differential equations with a parameter
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 59
EP  - 68
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_225_a4/
LA  - ru
ID  - INTO_2023_225_a4
ER  - 
%0 Journal Article
%A A. A. Golubkov
%T Quasi-nonmonodromic systems of first-order differential equations with a parameter
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 59-68
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_225_a4/
%G ru
%F INTO_2023_225_a4
A. A. Golubkov. Quasi-nonmonodromic systems of first-order differential equations with a parameter. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 59-68. http://geodesic.mathdoc.fr/item/INTO_2023_225_a4/

[1] Bolibrukh A. A., “Differentsialnye uravneniya s meromorfnymi koeffitsientami”, Sovr. probl. mat., 2003, no. 1, 29–-82 | DOI | MR | Zbl

[2] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[3] Golubkov A. A., “Obratnaya zadacha dlya operatorov Shturma––Liuvillya v kompleksnoi ploskosti”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inf., 18:2 (2018), 144–-156 | MR | Zbl

[4] Golubkov A. A., “Kraevaya zadacha dlya uravneniya Shturma––Liuvillya s kusochno-tselym potentsialom na krivoi i usloviyami razryva reshenii”, Sib. elektron. mat. izv., 16 (2019), 1005–-1027 | Zbl

[5] Golubkov A. A., “Spektr operatora Shturma––Liuvillya na krivoi s parametrom v kraevykh usloviyakh i usloviyakh razryvov reshenii”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 193 (2021), 45–-68 | DOI

[6] Ishkin Kh. K., “O kriterii odnoznachnosti reshenii uravneniya Shturma––Liuvillya”, Mat. zametki., 84:4 (2008), 552–-566 | DOI | Zbl

[7] Ishkin Kh. K., “O kriterii bezmonodromnosti uravneniya Shturma––Liuvillya”, Mat. zametki., 94:4 (2013), 552–-568 | DOI | Zbl

[8] Ishkin Kh. K., Akhmetshina A. D., “O klasse potentsialov s trivialnoi monodromiei”, Vestn. Kazakh. nats. un-ta. Ser. mat. mekh. inform., 99:3 (2018), 43–-52

[9] Ishkin Kh. K., Davletova L. G., “Regulyarizovannyi sled operatora Shturma––Liuvillya na krivoi s regulyarnoi osobennostyu na khorde”, Differ. uravn., 56:10 (2020), 1291–-1303 | DOI

[10] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971

[11] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1981

[12] Markushevich A. M., Teoriya analiticheskikh funktsii. T. 2, Nauka, M., 1968 | MR

[13] Oblomkov A. A., “Bezmonodromnye operatory Shredingera s kvadratichno rastuschim potentsialom”, Teor. mat. fiz., 121:3 (1999), 374–-386 | DOI | MR | Zbl

[14] Kheding Dzh., Vvedenie v metod fazovykh integralov (metod VKB), Mir, M., 1965

[15] Duistermaat J. J., Grünbaum F. A., “Differential equations in the spectral parameter”, Commun. Math. Phys., 103:2 (1986), 177–-240 | DOI | MR | Zbl

[16] Gibbons J., Veselov A. P., “On the rational monodromy-free potentials with sextic growth”, J. Math. Phys., 50:1 (2009), 013513 | DOI | MR | Zbl

[17] Golubkov A. A., Kuryshova Yu. V., “Inverse problem for Sturm–-Liouville operators on a curve”, Tamkang J. Math., 50:3 (2019), 349–-359 | DOI | MR | Zbl

[18] Golubkov A. A., “Inverse problem for the Sturm–-Liouville equation with piecewise entire potential and piecewise constant weight on a curve”, Sib. elektron. mat. izv., 18:2 (2021), 951–-974 | MR | Zbl

[19] Langer R. E., “The boundary problem of an ordinary linear differential system in the complex domain”, Trans. Am. Math. Soc., 46 (1939), 151–-190 | DOI | MR | Zbl