Kac--Siegert formula for oscillatory random processes
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 38-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general scheme for calculating the characteristic functions of random variables represented by quadratic functionals of the trajectories of elementary Gaussian processes based on the Feynman—Kac method is described. This scheme is applied to the oscillatory random process $\langle{\tilde x}(t)$, $t \in {\Bbb R}\rangle$. The characteristic function $Q(-i\lambda,t)$ of the random variable $\mathsf{J}_t[{\tilde x}(s)]=\int_0^t (d {\tilde x}(s)/ds )^2 ds$ of its random trajectories ${\tilde x}(t)$ is calculated.
Keywords: oscillatory random process, white noise, Kolmogorov equation, characteristic function.
Mots-clés : matrix Riccati equation
@article{INTO_2023_225_a3,
     author = {Yu. P. Virchenko and A. S. Mazmanishvili},
     title = {Kac--Siegert formula for oscillatory random processes},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {38--58},
     publisher = {mathdoc},
     volume = {225},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a3/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
AU  - A. S. Mazmanishvili
TI  - Kac--Siegert formula for oscillatory random processes
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 38
EP  - 58
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_225_a3/
LA  - ru
ID  - INTO_2023_225_a3
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%A A. S. Mazmanishvili
%T Kac--Siegert formula for oscillatory random processes
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 38-58
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_225_a3/
%G ru
%F INTO_2023_225_a3
Yu. P. Virchenko; A. S. Mazmanishvili. Kac--Siegert formula for oscillatory random processes. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 38-58. http://geodesic.mathdoc.fr/item/INTO_2023_225_a3/

[22] Virchenko Yu. P., Mazmanishvili A. S., “Statisticheskie svoistva funktsionala-svertki ot normalnogo markovskogo protsessa”, Dokl. AN Ukr. SSR. Ser. A., 1 (1989), 14–16 | Zbl

[23] Virchenko Yu. P., Mazmanishvili A. S., “Raspredelenie veroyatnostei sluchainogo funktsionala-svertki ot normalnogo markovskogo protsessa”, Probl. peredachi inform., 26:3 (1990), 96–101 | Zbl

[24] Virchenko Yu. P., Mazmanishvili A. S., “Statisticheskie svoistva kross-korrelyatsionnogo funktsionala na traektoriyakh dvukh protsessov Ornshteina—Ulenbeka”, Radiofiz. kvant. elektron., 39:7 (1996), 916–924

[25] Virchenko Yu. P., Mazmanishvili A. S., “Raspredelenie kross-korrelyatsionnogo funktsionala ot traektorii dvukh protsessov Ornshteina—Ulenbeka”, Dokl. NANU., 4 (1996), 27–30 | Zbl

[26] Virchenko Yu. P., Mazmanishvili A. S., “Issledovanie statistiki funktsionala kontrolya kachestva v teorii obrabotki sherokhovatoi poverkhnosti”, Funkts. mater., 11:1 (2004), 6–13

[27] Gantmakher F. R., Teoriya matrits, Nauka, M., 1954 | MR

[28] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov. T. 1, Nauka, M., 1971 | MR

[29] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[30] Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F., Handbook on probability theory and mathematical statistics, Nauka, M., 1985 | MR

[31] Novikov E. A., “Funktsionaly i metod sluchainykh sil v teorii turbulentnosti”, ZhETF., 47 (1964), 1919–1927

[32] Palin V. V., “O razreshimosti kvadratnykh matrichnykh uravnenii”, Vestn. Mosk. un-ta. Ser. 1. Mat. mekh., 6 (2008), 36–41 | MR | Zbl

[33] Anderson T. W., The Statistical Analysis of Time Series, Wiley, New York, 1971 | MR | Zbl

[34] Antosik P., Mikusinski J., Sikorski R., Theory of Distributions. The Sequential Approach, Elsevier, Amsterdam, 1973 | MR | Zbl

[35] Arato M., Linear Stochastic Systems with Constant Coefficients. A Statistical Approach, Springer-Verlag, Berlin, 1982 | MR | Zbl

[36] Doob J. L., Stochastic Processes, Wiley, New York, 1953 | MR | Zbl

[37] Furutsu K., “On the statistical theory of electromagnetic waves in a fluctuating medium”, J. Res. Natl. Bur. Standards. Sec. D., 67 (1963), 303–311

[38] Horsthemke W., Lefever R., Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology, Springer-Verlag, Berlin, 1984 | MR | Zbl

[39] Ibragimov I. A., Rozanov Yu. A., Gaussian Random Processes, Springer-Verlag, New York, 1978 | MR | Zbl

[40] Kac M., Probability and Related Topics in Physical Sciences, Interscience, New York, 1957 | MR

[41] Kac M., Ziegert A. J. F., “On the theory of noise in radio receivers with square law detector”, J. Appl. Phys., 18:4 (1947), 383–397 | DOI | MR

[42] Karhunen K., “Über Linearen Methoden in der Wahrscheinlichkeit Srechung”, Ann. Acad. Sci. Fenn. Ser. A., 1:2 (1947) | MR

[43] Kendall M., Time Series, Griffin, London, 1975 | MR

[44] Lax M., Fluctuation and Coherence Phenomena in Classical and Quantum Physics, Gordon Breach, New York, 1968

[45] Loéve M., Probability Theory, Van Nostrand, Princeton, New Jersey, 1955 | Zbl

[46] Pugachev V. S., Theory of Random Functions And Its Application to Control Problems, Elsevier, Amsterdam, 2013 | MR

[47] Pugachev V. S., Sinitsin I. N., Stochastic Differential Systems Analysis and Filtering, World Scientific, Chichester–New York, 2002 | MR

[48] Simon B., The $P(\varphi)_2$ Euclidian Quantum Field Theory, Princeton Univ. Press, Princeton, New Jersey, 1974 | MR

[49] Slepian D., “Fluctuation of random noise power”, Bell Systems Tech. J., 37:1 (1958), 163–184 | DOI | MR

[50] Stratonovich R. L., Selected Topics in the Theory of Random Noise. Vols. 1, 2, Gordon Breach, New York, 1963, 1967 | MR

[51] Wong E., Zakai M., “On the convergence of ordinary integrals to stochastic integrals”, Ann. Math. Stat., 36:5 (1965), 1560–1564 | DOI | MR | Zbl