Step scaling functions and the Chrestenson system
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 134-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

A review of methods for constructing step scaling functions on the positive half-line $\mathbb{R}_+$ associated with the Chrestenson functions is presented. The conditions under which such step functions generate orthogonal wavelets and tight frames are discussed. A detailed bibliography is provided.
Keywords: Walsh function, Chrestenson system, Cantor group, Vilenkin group, scaling function, wavelet, tight frame, discrete wavelet transform.
Mots-clés : Poisson formula
@article{INTO_2023_225_a11,
     author = {Yu. A. Farkov},
     title = {Step scaling functions and the {Chrestenson} system},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {134--149},
     publisher = {mathdoc},
     volume = {225},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a11/}
}
TY  - JOUR
AU  - Yu. A. Farkov
TI  - Step scaling functions and the Chrestenson system
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 134
EP  - 149
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_225_a11/
LA  - ru
ID  - INTO_2023_225_a11
ER  - 
%0 Journal Article
%A Yu. A. Farkov
%T Step scaling functions and the Chrestenson system
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 134-149
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_225_a11/
%G ru
%F INTO_2023_225_a11
Yu. A. Farkov. Step scaling functions and the Chrestenson system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 134-149. http://geodesic.mathdoc.fr/item/INTO_2023_225_a11/

[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, LKI, M., 2008 | MR

[2] Dobeshi I., Desyat lektsii po veivletam, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2001

[3] Lukomskii S. F., Berdnikov G. S., Kruss Yu. S., “Ob ortogonalnosti sistemy sdvigov masshtabiruyuschei funktsii na gruppakh Vilenkina”, Mat. zametki., 98:2 (2015), 310–313 | DOI | Zbl

[4] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2006

[5] Novikov I. Ya., Skopina M. A. Pochemu v raznykh strukturakh bazisy Khaara odinakovye?, Mat. zametki., 91:6 (2012), 895-–898 | DOI | MR | Zbl

[6] Parshin A. N., “Zapiski o formule Puassona”, Algebra anal., 23:5 (2011), 1–-54

[7] Protasov V. Yu., “Approksimatsiya diadicheskimi vspleskami”, Mat. sb., 198:11 (2007), 135–152 | DOI | MR | Zbl

[8] Protasov V. Yu., Farkov Yu. A., “Diadicheskie veivlety i masshtabiruyuschie funktsii na polupryamoi”, Mat. sb., 197:10 (2006), 129–160 | DOI | Zbl

[9] Rodionov E. A., Farkov Yu. A., “Otsenki gladkosti diadicheskikh ortogonalnykh vspleskov tipa Dobeshi”, Mat. zametki., 86:3 (2009), 429–-444 | DOI | MR | Zbl

[10] Skopina M. A., Farkov Yu. A., “Funktsii tipa Uolsha na $M$-polozhitelnykh mnozhestvakh v $\mathbb{R}^d$”, Mat. zametki., 111:4 (2022), 631–-635 | DOI | Zbl

[11] Ustinov A. V., “Diskretnyi analog formuly summirovaniya Puassona”, Mat. zametki., 73:1 (2003), 106–112 | DOI | MR | Zbl

[12] Farkov Yu. A., “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. mat., 69:3 (2005), 193–220 | DOI | MR | Zbl

[13] Farkov Yu. A., “Ortogonalnye veivlety na pryamykh proizvedeniyakh tsiklicheskikh grupp”, Mat. zametki., 82:6 (2007), 934–-952 | DOI | Zbl

[14] Farkov Yu. A., “Biortogonalnye vspleski na gruppakh Vilenkina”, Tr. Mat. in-ta im. V. A. Steklova RAN., 265 (2009), 110–124 | MR | Zbl

[15] Farkov Yu. A., “Diskretnye veivlety i preobrazovanie Vilenkina—Krestensona”, Mat. zametki., 89:6 (2011), 914–928 | DOI | Zbl

[16] Farkov Yu. A., “Ortogonalnye vspleski v analize Uolsha”, Sovremennye problemy matematiki i mekhaniki. T. XI. Vyp. 1. Matematika. K 80-letiyu V. A. Skvortsova. Obobschennye integraly i garmonicheskii analiz, eds. Lukashenko T. P., Solodov A. P., Izd-vo MGU, M., 2016, 62–75

[17] Farkov Yu. A., “Freimy v analize Uolsha, matritsy Adamara i ravnomerno raspredelennye mnozhestva”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 199 (2021), 17–-30 | DOI

[18] Chernov V. M., Arifmeticheskie metody sinteza bystrykh algoritmov diskretnykh ortogonalnykh preobrazovanii, Fizmatlit, M., 2007

[19] Behera B., “Density of frame wavelets and tight frame wavelets in local fields”, Complex Anal. Oper. Theory., 15:6 (2021), 102 | DOI | MR | Zbl

[20] Behera B., Jahan Q., Wavelet Analysis on Local Fields of Positive Characteristic, Springer, Singapore, 2021 | MR | Zbl

[21] Benedetto J. J., Benedetto R. L., “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14 (2004), 423–456 | DOI | MR | Zbl

[22] Benedetto J. J., Benedetto R. L., “Frames of translates for number-theoretic groups”, J. Geom. Anal., 30:4 (2020), 4126–4149 | DOI | MR | Zbl

[23] Benedetto R. L., “Examples of wavelets for local fields”, Contemp. Math., 345 (2004), 27–47 | DOI | MR | Zbl

[24] Berdnikov G. S., “Necessary and sufficient condition for an orthogonal scaling function on Vilenkin groups”, \Russian Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 19:1 (2019), 24-–33 | MR | Zbl

[25] Berdnikov G., Kruss Yu., Lukomskii S., “How to construct wavelets on local fields of positive characteristic”, Lobachevskii J. Math., 38:4 (2017), 615–621 | DOI | MR | Zbl

[26] Bownik M., Iverson J. W., “Multiplication-invariant operators and the classification of LCA group frames”, J. Funct. Anal., 280:2 (2021), 108780 | DOI | MR | Zbl

[27] Chrestenson H. E., “A class of generalized Walsh functions”, Pac. J. Math., 5:1 (1955), 17–32 | DOI | MR

[28] Debnath L., Shah F. A., Wavelet Transforms and Their Applications, New York, 2015 | MR | Zbl

[29] Evdokimov S., “Haar multiresolution analysis and Haar bases on the ring of rational adeles”, J. Math. Sci., 192:2 (2013), 215–219 | DOI | MR | Zbl

[30] Evdokimov S., Skopina M., “On orthogonal $p$-adic wavelet bases”, J. Math. Anal. Appl., 424:2 (2015), 952–965 | DOI | MR | Zbl

[31] Farkov Yu. A., “Orthogonal $p$-wavelets on $\mathbb{R}_+$”, Proc. Int. Conf. on Wavelets and Splines (St. Petersburg, Russia, July 3–8, 2003), St. Petersburg Univ. Press, Saint Petersburg, 2005, 4–26 | MR | Zbl

[32] Farkov Yu. A., “Multiresolution analysis and wavelets on Vilenkin groups”, Facta Univ. Ser. Electr. Energ., 21:3 (2008), 309–325 | DOI | MR

[33] Farkov Yu. A., “On wavelets related to the Walsh series”, J. Approx. Theory., 161 (2009), 259–279 | DOI | MR | Zbl

[34] Farkov Yu. A., “Examples of frames on the Cantor dyadic group”, J. Math. Sci., 187:1 (2012), 22–34 | DOI | MR | Zbl

[35] Farkov Yu. A., “Constructions of MRA-based wavelets and frames in Walsh analysis”, Poincaré J. Anal. Appl., 2015, no. 2, 13–36 | DOI | MR | Zbl

[36] Farkov Yu. A., “On the best linear approximation of holomorphic functions”, J. Math. Sci., 218:5 (2016), 678–698 | DOI | MR | Zbl

[37] Farkov Yu. A., “Nonstationary multiresolution analysis for Vilenkin groups”, Proc. Int. Conf. on Sampling Theory and Applications (Tallinn, Estonia, July 3-7, 2017), 2017, 595–598

[38] Farkov Yu. A., “Wavelet frames related to Walsh functions”, Eur. J. Math., 5:1 (2019), 250–267 | DOI | MR | Zbl

[39] Farkov Yu. A., “Chrestenson–Levy system and step scaling functions”, Bull. Gumilyov Eurasian Natl. Univ. Ser. Math. Comput. Sci. Mech., 130:1 (2020), 59–72

[40] Farkov Yu. A., “Discrete wavelet transforms in Walsh analysis”, J. Math. Sci., 257:1 (2021), 127–137 | DOI | MR | Zbl

[41] Farkov Yu. A., “Finite Parseval frames in Walsh analysis”, J. Math. Sci., 263:4 (2022), 579–589 | DOI | MR

[42] Farkov Yu. A., Lebedeva E. A., Skopina M. A., “Wavelet frames on Vilenkin groups and their approximation properties”, Int. J. Wavelets Multires. Inf. Process., 13:5 (2015), 1550036 | DOI | MR | Zbl

[43] Farkov Yu. A., Manchanda P., Siddiqi A. H., Construction of Wavelets through Walsh Functions, Springer, Singapore, 2019 | MR | Zbl

[44] Farkov Yu. A., Rodionov E. A., “Algorithms for wavelet construction on Vilenkin groups”, $p$-Adic Num. Ultrametr. Anal. Appl., 3:3 (2011), 181–195 | DOI | MR | Zbl

[45] Farkov Yu. A., Rodionov E. A., “On biorthogonal discrete wavelet bases”, Int. J. Wavelets Multires. Inf. Process., 13:1 (2015), 1550002 | DOI | MR | Zbl

[46] Farkov Yu. A., Skopina M. A., “Step wavelets on Vilenkin groups”, J. Math. Sci., 266:5 (2022), 696–708 | DOI | MR

[47] Gajić D. B., Stanković R. S., “Computation of the Vilenkin–Chrestenson transform on a GPU”, J. Mult.-Val. Log. Soft Comput., 24:1-4 (2015), 317–340 | MR | Zbl

[48] Hirn M. J., “The refinability of step functions”, Proc. Am. Math. Soc., 136:3 (2010), 899–908 | DOI | MR

[49] Karapetyants M. A., Protasov V. Yu., “Spaces of dyadic distributions”, Funct. Anal. Appl., 54:4 (2020), 272–277 | DOI | MR | Zbl

[50] Krivoshein A. V., Lebedeva E. A., “Uncertainty principle for the Cantor dyadic group”, J. Math. Anal. Appl., 423:2 (2015), 1231–1242 | DOI | MR | Zbl

[51] Krivoshein A., Protasov V., Skopina M., Multivariate Wavelet Frames, Springer, Singapore, 2016 | MR | Zbl

[52] Lang W. C., “Orthogonal wavelets on the Cantor dyadic group”, SIAM J. Math. Anal., 27:1 (1996), 305–312 | DOI | MR | Zbl

[53] Lang W. C., “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24:3 (1998), 533–544 | MR | Zbl

[54] Lawton W., Lee S. L., Shen Z., “Characterization of compactly supported refinable splines”, Adv. Comput. Math., 3:1-2 (1995), 137–145 | DOI | MR | Zbl

[55] Lebedeva E. A., “Approximation properties of systems of periodic wavelets on the Cantor group”, J. Math. Sci., 244:4 (2020), 642–648 | DOI | MR | Zbl

[56] Li D., Jiang H., “The necessary condition and sufficient conditions for wavelet frame on local fields”, J. Math. Anal. Appl., 344:1 (2008), 500–510 | MR

[57] Lukomskii S. F., “Step refinable functions and orthogonal MRA on $p$-adic Vilenkin groups”, J. Fourier Anal. Appl., 20 (2014), 42–65 | DOI | MR | Zbl

[58] Lukomskii S. F., Berdnikov G. S., “$N$-Valid trees in wavelet theory on Vilenkin groups”, Int. J. Wavelets Multires. Inf. Process., 13:5 (2015), 1550037 | DOI | MR | Zbl

[59] Mahapatra P., Singh D., “Construction of MRA and non-MRA wavelet sets on the Cantor dyadic group”, Bull. Sci. Math., 167 (2021), 102945 | DOI | MR | Zbl

[60] Mallat S., A Wavelet Tour of Signal Processing. The Sparse Way, Elsevier/Academic Press, Amsterdam, 2009 | MR | Zbl

[61] Platonov S. S., “Some problems in the theory of approximation of functions on locally compact Vilenkin groups”, $p$-Adic Num. Ultrametr. Anal. Appl., 11:2 (2019), 163–175 | DOI | MR | Zbl

[62] Plotnikov M., “On the Vilenkin-Chrestenson systems and their rearrangements”, J. Math. Anal. Appl., 492:1 (2020), 124391 | DOI | MR | Zbl

[63] Schipp F., Wade W. R., Simon P., Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, New York, 1990 | MR | Zbl

[64] Skopina M., “$p$-Adic wavelets”, Poincaré J. Anal. Appl., 2015, no. 2, 53–63 | DOI | MR | Zbl

[65] Waldron S., An Introduction to Finite Tight Frames, Springer, New York, 2018 | MR