Initial-value problem for an integro-differential equation with difference kernels and an inhomogeneity in the linear part
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

A global theorem on the existence and uniqueness of a nonnegative solution of the initial-value problem for an integro-differential equation with difference kernels, power nonlinearity, and inhomogeneity in the linear part is proved by the method of weight metrics in the cone of the space of continuous functions. It is shown that the solution can be found by the method of successive approximations of the Picard type. An estimate of the rate of their convergence is obtained.
Keywords: integro-differential equation, difference kernel, power nonlinearity.
@article{INTO_2023_225_a0,
     author = {S. N. Askhabov},
     title = {Initial-value problem for an integro-differential equation with difference kernels and an inhomogeneity in the linear part},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {225},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a0/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Initial-value problem for an integro-differential equation with difference kernels and an inhomogeneity in the linear part
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 3
EP  - 13
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_225_a0/
LA  - ru
ID  - INTO_2023_225_a0
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Initial-value problem for an integro-differential equation with difference kernels and an inhomogeneity in the linear part
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 3-13
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_225_a0/
%G ru
%F INTO_2023_225_a0
S. N. Askhabov. Initial-value problem for an integro-differential equation with difference kernels and an inhomogeneity in the linear part. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2023_225_a0/

[2009] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR

[2010] Askhabov S. N., “Integro-differentsialnoe uravnenie tipa svertki so stepennoi nelineinostyu i neodnorodnostyu v lineinoi chasti”, Differ. uravn., 56:6 (2020), 786–795 | DOI | Zbl

[2011] Askhabov S. N., “Sistema integro-differentsialnykh uravnenii tipa svertki so stepennoi nelineinostyu”, Sib. zh. industr. mat., 24:3 (2021), 5–18 | Zbl

[2012] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M.\, 1962 | MR

[2013] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[2014] Brunner H., Volterra Integral Equations: An Introduction to Theory and Applications, Cambridge Univ. Press, Cambridge, 2017 | MR | Zbl

[2015] Keller J. J., “Propagation of simple nonlinear waves in gas filled tubes with friction”, Z. Angew. Math. Phys., 32:2 (1981), 170–181 | DOI | MR | Zbl

[2016] Okrasinski W., “On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation”, Ann. Polon. Math., 36:1 (1979), 61–72 | DOI | MR | Zbl

[2017] Okrasinski W., “On a non-linear convolution equation occurring in the theory of water percolation”, Ann. Polon. Math., 37:3 (1980), 223–229 | DOI | MR | Zbl

[2018] Okrasinski W., “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–74 | MR

[2019] Schneider W. R., “The general solution of a nonlinear integral equation of the convolution type”, Z. Angew. Math. Phys., 33:1 (1982), 140–142 | DOI | MR | Zbl

[2020] Vabishchevich P. N., “Numerical solution of the Cauchy problem for Volterra integro-differential equations with difference kernels”, Appl. Numer. Math., 174:4 (2022), 177–190 | DOI | MR | Zbl