Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_225_a0, author = {S. N. Askhabov}, title = {Initial-value problem for an integro-differential equation with difference kernels and an inhomogeneity in the linear part}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--13}, publisher = {mathdoc}, volume = {225}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a0/} }
TY - JOUR AU - S. N. Askhabov TI - Initial-value problem for an integro-differential equation with difference kernels and an inhomogeneity in the linear part JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 3 EP - 13 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_225_a0/ LA - ru ID - INTO_2023_225_a0 ER -
%0 Journal Article %A S. N. Askhabov %T Initial-value problem for an integro-differential equation with difference kernels and an inhomogeneity in the linear part %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 3-13 %V 225 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_225_a0/ %G ru %F INTO_2023_225_a0
S. N. Askhabov. Initial-value problem for an integro-differential equation with difference kernels and an inhomogeneity in the linear part. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2023_225_a0/
[2009] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR
[2010] Askhabov S. N., “Integro-differentsialnoe uravnenie tipa svertki so stepennoi nelineinostyu i neodnorodnostyu v lineinoi chasti”, Differ. uravn., 56:6 (2020), 786–795 | DOI | Zbl
[2011] Askhabov S. N., “Sistema integro-differentsialnykh uravnenii tipa svertki so stepennoi nelineinostyu”, Sib. zh. industr. mat., 24:3 (2021), 5–18 | Zbl
[2012] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M.\, 1962 | MR
[2013] Edvards R., Funktsionalnyi analiz, Mir, M., 1969
[2014] Brunner H., Volterra Integral Equations: An Introduction to Theory and Applications, Cambridge Univ. Press, Cambridge, 2017 | MR | Zbl
[2015] Keller J. J., “Propagation of simple nonlinear waves in gas filled tubes with friction”, Z. Angew. Math. Phys., 32:2 (1981), 170–181 | DOI | MR | Zbl
[2016] Okrasinski W., “On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation”, Ann. Polon. Math., 36:1 (1979), 61–72 | DOI | MR | Zbl
[2017] Okrasinski W., “On a non-linear convolution equation occurring in the theory of water percolation”, Ann. Polon. Math., 37:3 (1980), 223–229 | DOI | MR | Zbl
[2018] Okrasinski W., “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–74 | MR
[2019] Schneider W. R., “The general solution of a nonlinear integral equation of the convolution type”, Z. Angew. Math. Phys., 33:1 (1982), 140–142 | DOI | MR | Zbl
[2020] Vabishchevich P. N., “Numerical solution of the Cauchy problem for Volterra integro-differential equations with difference kernels”, Appl. Numer. Math., 174:4 (2022), 177–190 | DOI | MR | Zbl