On some zero-front solutions of an evolution parabolic system
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 80-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an existence and uniqueness theorem for a nontrivial analytical zero-front solution of a problem for a nonlinear evolution parabolic predator-prey system. In special cases, we construct exact solutions by reduction to the Cauchy problem for a system of ordinary differential equations, which inherits all features of the original problem. We propose an algorithm for the numerical solution of the problem based on the method of specific solutions and present the result of computational experiments.
Keywords: nonlinear parabolic system, existence theorem, particular solutions method, computational experiment.
Mots-clés : exact solution
@article{INTO_2023_224_a9,
     author = {A. L. Kazakov and P. A. Kuznetsov and L. F. Spevak},
     title = {On some zero-front solutions of an evolution parabolic system},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {80--88},
     publisher = {mathdoc},
     volume = {224},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a9/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - P. A. Kuznetsov
AU  - L. F. Spevak
TI  - On some zero-front solutions of an evolution parabolic system
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 80
EP  - 88
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_224_a9/
LA  - ru
ID  - INTO_2023_224_a9
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A P. A. Kuznetsov
%A L. F. Spevak
%T On some zero-front solutions of an evolution parabolic system
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 80-88
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_224_a9/
%G ru
%F INTO_2023_224_a9
A. L. Kazakov; P. A. Kuznetsov; L. F. Spevak. On some zero-front solutions of an evolution parabolic system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 80-88. http://geodesic.mathdoc.fr/item/INTO_2023_224_a9/

[1] Barenblatt G. G., Entov V. N., Ryzhik V. M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984

[2] Bautin S. P., Kazakov A. L., Obobschennaya zadacha Koshi i ee prilozheniya, Nauka, Novosibirsk, 2006

[3] Dedyu I. I., Ekologicheskii entsiklopedicheskii slovar, Kishinev, 1989

[4] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 1966

[5] Kazakov A. L., “O tochnykh resheniyakh kraevoi zadachi o dvizhenii teplovoi volny dlya uravneniya nelineinoi teploprovodnosti”, Sib. elektron. mat. izv., 16 (2019), 1057–1068 | Zbl

[6] Kazakov A. L., Kuznetsov P. A., “Ob analiticheskikh resheniyakh odnoi spetsialnoi kraevoi zadachi dlya nelineinogo uravneniya teploprovodnosti v polyarnykh koordinatakh”, Sib. zh. industr. mat., 24:2 (74) (2018), 56–65

[7] Kazakov A. L., Orlov Sv. S., Orlov S. S., “Postroenie i issledovanie nekotorykh tochnykh reshenii nelineinogo uravneniya teploprovodnosti”, Cib. mat. zh., 59:3 (2018), 544–560 | Zbl

[8] Kazakov A. L., Spevak L. F., “Tochnye i priblizhennye resheniya vyrozhdayuscheisya sistemy reaktsiya-diffuziya”, Prikl. mekh. tekhn. fiz., 62:4 (2021), 169–-180 | DOI | Zbl

[9] Kuznetsov P. A., “Analiticheskie diffuzionnye volny v nelineinoi parabolicheskoi modeli «khischnik-zhertva»”, Tr. In-ta mat. mekh. UrO RAN., 28:2 (2022), 158–167 | MR

[10] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[11] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987

[12] Sidorov A. F., Izbrannye trudy. Matematika. Mekhanika, Fizmatlit, M., 2001 | MR

[13] Achouri T., Ayadi M., Habbal A., Yahyaoui B., “Numerical analysis for the two-dimensional Fisher–Kolmogorov–-Petrovski–-Piskunov equation with mixed boundary condition”, J. Appl. Math. Comput., 68 (2022), 3589-–3614 | MR | Zbl

[14] Chen C. S., Chen W., Fu Z. J., Recent advances in radial basis function collocation method, Springer, Berlin–Heidelberg, 2013 | MR

[15] Courant R., Hilbert D., Methods of Mathematical Physics. Vol. II. Partial Differential Equations, Interscience, New York, 2008 | MR

[16] Dou F., Liu Y., Chen C. S., “The method of particular solutions for solving nonlinear Poisson problems”, Comput. Math. Appl., 77:2 (2019), 501–513 | MR | Zbl

[17] Fornberg B., Flyer N., “Solving PDEs with radial basis functions”, Acta Numer., 24 (2015), 215–258 | DOI | MR | Zbl

[18] Kazakov A. L., Kuznetsov P. A., Lempert A. A., “Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type”, Symmetry., 12:6 (2020), 999 | MR

[19] Kazakov A. L., Spevak L. F., “Constructing exact and approximate diffusionwave solutions for a quasilinear parabolic equation with power nonlinearities”, Mathematics., 10:9 (2022), 1559

[20] Murray J. D., Mathematical Biology. II: Spatial Models and Biomedical Applications., Springer, New York, 2003 | MR

[21] Nardini D., Brebbia C., “A new approach to free vibration analysis using boundary elements”, Appl. Math. Model., 7:3 (1983), 157–162 | DOI | MR | Zbl

[22] Perthame B., Parabolic Equations in Biology. Growth, Reaction, Movement and Diffusion, Springer, New York, 2015 | MR | Zbl