Voir la notice du chapitre de livre
Keywords: coincident functions, symmetric Boolean functions, weight of a binary set.
@article{INTO_2023_224_a8,
author = {O. V. Zubkov},
title = {On symmetric boolean functions invariant under the {M\"obius} transform},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {71--79},
year = {2023},
volume = {224},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a8/}
}
TY - JOUR AU - O. V. Zubkov TI - On symmetric boolean functions invariant under the Möbius transform JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 71 EP - 79 VL - 224 UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a8/ LA - ru ID - INTO_2023_224_a8 ER -
O. V. Zubkov. On symmetric boolean functions invariant under the Möbius transform. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 71-79. http://geodesic.mathdoc.fr/item/INTO_2023_224_a8/
[1] Bukhman A. V., “O raspoznavanii funktsii, invariantnykh otnositelno preobrazovaniya Mebiusa, i chetnykh funktsii, zadannykh v forme polinomov”, Prikladnaya matematika i informatika / Tr. f-ta VMK MGU im. M. V. Lomonosova, MAKS Press, M., 2012, 105–112
[2] Zubkov O. V., “Predstavlenie polinomialno ustoichivykh funktsii summami bespovtornykh v elementarnom bazise slagaemykh”, Mat. 6 Mezhdunar. shkoly-seminara «Sintaksis i semantika logicheskikh sistem» (Mongoliya, Khankh, 11-16 avgusta 2019 g.), Izd-vo IGU, Irkutsk, 2019, 48–52
[3] Zubkov O. V., “O klasse polinomialno ustoichivykh bulevykh funktsii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 214 (2022), 37–43 | DOI
[4] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004
[5] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2001
[6] MacWilliams F. J., Sloane N. J. A., The theory of Error-Correcting Codes, Noth-Holland, Amsterdam–New York–Oxford, 1978 | MR
[7] Pieprzyk J., Zhang X.-M., “Computing Möbius transform of boolean functions and characterising coincident boolean functions”, Boolean Functions: Cryptography and Applications, Publications des Univercites de Rouen et du Havre, Rouen, France, 2007, 135–151
[8] Sloane N. J. A., “Rows of Sierpinski's triangle”, http://oeis.org/A006943/b006943.txt