On the asymptotics of the Goursat problem with a power boundary layer
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 65-70
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider the Goursat problem for a partial differential equation containing a small parameter $\varepsilon$ in the coefficient of the highest derivative. For $\varepsilon=0$, the order of the equation does not decrease, but a singularity appears, which has the nature of a power boundary layer. A solution of the singularly perturbed Gaussian problem is constructed in the form of a formal series in powers of the small parameter. The asymptotic nature of the constructed series is proved.
Keywords:
singularly perturbed differential equation, asymptotic integration, power boundary layer
Mots-clés : Goursat problem.
Mots-clés : Goursat problem.
@article{INTO_2023_224_a7,
author = {I. V. Zakharova},
title = {On the asymptotics of the {Goursat} problem with a power boundary layer},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {65--70},
publisher = {mathdoc},
volume = {224},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a7/}
}
TY - JOUR AU - I. V. Zakharova TI - On the asymptotics of the Goursat problem with a power boundary layer JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 65 EP - 70 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a7/ LA - ru ID - INTO_2023_224_a7 ER -
%0 Journal Article %A I. V. Zakharova %T On the asymptotics of the Goursat problem with a power boundary layer %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 65-70 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_224_a7/ %G ru %F INTO_2023_224_a7
I. V. Zakharova. On the asymptotics of the Goursat problem with a power boundary layer. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 65-70. http://geodesic.mathdoc.fr/item/INTO_2023_224_a7/