On the identification Volterra kernels in integral models of linear nonstationary dynamical systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 125-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose an identification algorithm for a nonstationary linear dynamical system. Conceptually, this algorithm is based on the use of piecewise linear test signals and the reduction of the original problem to a Volterra integral equation of the first kind with two variable integration limits. The numerical implementation of this algorithm is based on the quadrature formula of the middle rectangles and the product integration method. The convergence of the method of middle rectangles for a new class of linear Volterra integral equations is examined.
Mots-clés : identification, convergence.
Keywords: nonstationary dynamical system, quadrature of middle rectangles, product integration method
@article{INTO_2023_224_a14,
     author = {S. V. Solodusha and E. D. Antipina},
     title = {On the identification {Volterra} kernels in integral models of linear nonstationary dynamical systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {125--132},
     publisher = {mathdoc},
     volume = {224},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a14/}
}
TY  - JOUR
AU  - S. V. Solodusha
AU  - E. D. Antipina
TI  - On the identification Volterra kernels in integral models of linear nonstationary dynamical systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 125
EP  - 132
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_224_a14/
LA  - ru
ID  - INTO_2023_224_a14
ER  - 
%0 Journal Article
%A S. V. Solodusha
%A E. D. Antipina
%T On the identification Volterra kernels in integral models of linear nonstationary dynamical systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 125-132
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_224_a14/
%G ru
%F INTO_2023_224_a14
S. V. Solodusha; E. D. Antipina. On the identification Volterra kernels in integral models of linear nonstationary dynamical systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 125-132. http://geodesic.mathdoc.fr/item/INTO_2023_224_a14/

[1] Apartsin A. S., “O novykh klassakh lineinykh mnogomernykh uravnenii I roda tipa Volterra”, Izv. vuzov. Mat., 1995, no. 11, 28–41 | MR | Zbl

[2] Apartsin A. S., “O povyshenii tochnosti modelirovaniya nelineinykh dinamicheskikh sistem polinomami Volterra”, Elektron. model., 19:6 (2001), 3–12

[3] Apartsin A. S., Spiryaev V. A., “Ob odnom podkhode k identifikatsii polinomov Volterra”, Optimizatsiya, upravlenie, intellekt., 2005, no. 2, 109–117

[4] Boikov I. V., Krivulin N. P., “Metody identifikatsii dinamicheskikh sistem”, Programmnye sistemy: teoriya i prilozheniya., 5:5 (2014), 79–96 | MR

[5] Voskoboinikov Yu. E., Solodusha S. V., “Zadacha i algoritm neparametricheskoi identifikatsii lineinoi nestatsionarnoi dinamicheskoi sistemy s pomoschyu kubicheskikh splainov”, Sib. zh. vychisl. mat., 26:1 (v pechati) (2023)

[6] Fomin A. A., Pavlenko V. D., Fedorova A. N., “Metod postroeniya mnogomernoi modeli Volterra glazodvigatelnogo apparata”, Elektrotekhn. kompyut. sist., 19(95) (2015), 296–301

[7] Apartsyn A. S., Nonclassical Volterra equations of the first kind: Theory and numerical methods, VSP, Utrecht, Boston, 2003 | MR

[8] Balassa G., “Estimating scattering potentials in inverse problems with a non-causal Volterra model”, Mathematics., 10:8 (2022), 1257

[9] Brunner H., Volterra Integral Equations: An Introduction to Theory and Applications, Cambridge Univ. Press, Cambridge, 2017 | MR | Zbl

[10] Linz P., “Product integration method for Volterra integral equations of the first kind”, BIT Numer. Math., 11 (1971), 413–421 | DOI | MR | Zbl

[11] Solodusha S. V., “New classes of Volterra integral equations of the first kind related to the modeling of the wind turbine dynamics”, Proc. 15 Int. Conf. “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conference) (Moscow, June 03–05, 2020), IEEE, 2020, 1–3

[12] Suslov K. V., Gerasimov D. O., Vinnikov V. A., Solodusha S. V., “Modelling and simulation of power generation of smart electricity supply systems”, Proc. CIGRE Session 46 (Paris, August 21–26, 2016), 2016, 135990

[13] Wiener N., Nonlinear Problems in Random Theory, The Technology Press of M.I.T., New York, 1958 | MR | Zbl