Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_224_a14, author = {S. V. Solodusha and E. D. Antipina}, title = {On the identification {Volterra} kernels in integral models of linear nonstationary dynamical systems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {125--132}, publisher = {mathdoc}, volume = {224}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a14/} }
TY - JOUR AU - S. V. Solodusha AU - E. D. Antipina TI - On the identification Volterra kernels in integral models of linear nonstationary dynamical systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 125 EP - 132 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a14/ LA - ru ID - INTO_2023_224_a14 ER -
%0 Journal Article %A S. V. Solodusha %A E. D. Antipina %T On the identification Volterra kernels in integral models of linear nonstationary dynamical systems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 125-132 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_224_a14/ %G ru %F INTO_2023_224_a14
S. V. Solodusha; E. D. Antipina. On the identification Volterra kernels in integral models of linear nonstationary dynamical systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 125-132. http://geodesic.mathdoc.fr/item/INTO_2023_224_a14/
[1] Apartsin A. S., “O novykh klassakh lineinykh mnogomernykh uravnenii I roda tipa Volterra”, Izv. vuzov. Mat., 1995, no. 11, 28–41 | MR | Zbl
[2] Apartsin A. S., “O povyshenii tochnosti modelirovaniya nelineinykh dinamicheskikh sistem polinomami Volterra”, Elektron. model., 19:6 (2001), 3–12
[3] Apartsin A. S., Spiryaev V. A., “Ob odnom podkhode k identifikatsii polinomov Volterra”, Optimizatsiya, upravlenie, intellekt., 2005, no. 2, 109–117
[4] Boikov I. V., Krivulin N. P., “Metody identifikatsii dinamicheskikh sistem”, Programmnye sistemy: teoriya i prilozheniya., 5:5 (2014), 79–96 | MR
[5] Voskoboinikov Yu. E., Solodusha S. V., “Zadacha i algoritm neparametricheskoi identifikatsii lineinoi nestatsionarnoi dinamicheskoi sistemy s pomoschyu kubicheskikh splainov”, Sib. zh. vychisl. mat., 26:1 (v pechati) (2023)
[6] Fomin A. A., Pavlenko V. D., Fedorova A. N., “Metod postroeniya mnogomernoi modeli Volterra glazodvigatelnogo apparata”, Elektrotekhn. kompyut. sist., 19(95) (2015), 296–301
[7] Apartsyn A. S., Nonclassical Volterra equations of the first kind: Theory and numerical methods, VSP, Utrecht, Boston, 2003 | MR
[8] Balassa G., “Estimating scattering potentials in inverse problems with a non-causal Volterra model”, Mathematics., 10:8 (2022), 1257
[9] Brunner H., Volterra Integral Equations: An Introduction to Theory and Applications, Cambridge Univ. Press, Cambridge, 2017 | MR | Zbl
[10] Linz P., “Product integration method for Volterra integral equations of the first kind”, BIT Numer. Math., 11 (1971), 413–421 | DOI | MR | Zbl
[11] Solodusha S. V., “New classes of Volterra integral equations of the first kind related to the modeling of the wind turbine dynamics”, Proc. 15 Int. Conf. “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conference) (Moscow, June 03–05, 2020), IEEE, 2020, 1–3
[12] Suslov K. V., Gerasimov D. O., Vinnikov V. A., Solodusha S. V., “Modelling and simulation of power generation of smart electricity supply systems”, Proc. CIGRE Session 46 (Paris, August 21–26, 2016), 2016, 135990
[13] Wiener N., Nonlinear Problems in Random Theory, The Technology Press of M.I.T., New York, 1958 | MR | Zbl