Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_224_a14, author = {S. V. Solodusha and E. D. Antipina}, title = {On the identification {Volterra} kernels in integral models of linear nonstationary dynamical systems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {125--132}, publisher = {mathdoc}, volume = {224}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a14/} }
TY - JOUR AU - S. V. Solodusha AU - E. D. Antipina TI - On the identification Volterra kernels in integral models of linear nonstationary dynamical systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 125 EP - 132 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a14/ LA - ru ID - INTO_2023_224_a14 ER -
%0 Journal Article %A S. V. Solodusha %A E. D. Antipina %T On the identification Volterra kernels in integral models of linear nonstationary dynamical systems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 125-132 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_224_a14/ %G ru %F INTO_2023_224_a14
S. V. Solodusha; E. D. Antipina. On the identification Volterra kernels in integral models of linear nonstationary dynamical systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 125-132. http://geodesic.mathdoc.fr/item/INTO_2023_224_a14/