Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. V
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 115-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider problems of stabilization of stationary motions (equilibrium positions and regular precessions) of a satellite near the center of mass in gravitational and magnetic fields under the assumption that the center of mass moves in a circular orbit. Solutions for a number of problems of stabilizing stationary motions of a satellite with the help of magnetic systems are proposed. We present the results of mathematical modeling of the algorithms, which confirm the effectiveness of the developed methodology. This paper is the final part of the work. The first part is: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 220. — P. 71–85. The second part is: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 221. — P. 71–92. The third part is: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 222. — P. 42–63. The fourth part is: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 223. — P. 84–106.
Keywords: linear nonstationary system, reducibility, stationary motions, linearized equations of satellite motions, stabilization, controllability, control algorithms.
@article{INTO_2023_224_a13,
     author = {V. M. Morozov and V. I. Kalenova and M. G. Rak},
     title = {Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. {V}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {115--124},
     publisher = {mathdoc},
     volume = {224},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a13/}
}
TY  - JOUR
AU  - V. M. Morozov
AU  - V. I. Kalenova
AU  - M. G. Rak
TI  - Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. V
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 115
EP  - 124
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_224_a13/
LA  - ru
ID  - INTO_2023_224_a13
ER  - 
%0 Journal Article
%A V. M. Morozov
%A V. I. Kalenova
%A M. G. Rak
%T Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. V
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 115-124
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_224_a13/
%G ru
%F INTO_2023_224_a13
V. M. Morozov; V. I. Kalenova; M. G. Rak. Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. V. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 115-124. http://geodesic.mathdoc.fr/item/INTO_2023_224_a13/

[34] Aleksandrov A. Yu., Tikhonov A. A., “Elektrodinamicheskaya stabilizatsiya programmnogo vrascheniya ISZ v orbitalnoi sisteme koordinat”, Vestn. Sankt-Peterburg. un-ta. Ser. 1. Mat. Mekh. Astron., 2012, no. 2, 79–90

[35] Aleksandrov V. V, Lemak S. S., Parusnikov N. A., Lektsii po mekhanike upravlyaemykh sistem, Kurs, M., 2018

[36] Beletskii V. V., Dvizhenie iskusstvennogo sputnika otnositelno tsentra mass, Nauka, M., 1965

[37] Beletskii V. V., Dvizhenie sputnika otnositelno tsentra mass v gravitatsionnom pole, Izd-vo Mosk. un-ta, M., 1975

[38] Beletskii V. V., Khentov A. A., Vraschatelnoe dvizhenie namagnichennogo sputnika, Nauka, M., 1985

[39] Duboshin G. N., “O vraschatelnom dvizhenii iskusstvennykh nebesnykh tel”, Byull. ITA AN SSSR., 7:7 (1960), 511–520 | Zbl

[40] Kalenova V. I., Morozov V. M., Lineinye nestatsionarnye sistemy i ikh prilozheniya k zadacham mekhaniki, Fizmatlit, M., 2010

[41] Kalenova V. I., Morozov V. M., “Privodimost lineinykh nestatsionarnykh sistem vtorogo poryadka s upravleniem i nablyudeniem”, Prikl. mat. mekh., 76:4 (2012), 576–588 | MR

[42] Kalenova V. I., Morozov V. M., “Ob upravlenii lineinymi nestatsionarnymi sistemami spetsialnogo vida”, Izv. RAN. Teoriya i sistemy upravleniya., 2013, no. 3, 6–15 | DOI | MR | Zbl

[43] Kalman R. E., “Ob obschei teorii sistem upravleniya”, Tr. Kongr. IFAK. T. 2, Izd-vo AN SSSR, M., 1961, 521–547

[44] Kalman R. E., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971 | MR

[45] Kondurar V. T., “Chastnye resheniya obschei zadachi o postupatelno-vraschatelnom dvizhenii sferoida pod deistviem prityazheniya shara”, Prikl. mekh. tekhn. fiz/, 36:5 (1960), 890–901 | MR

[46] Krasovskii N. N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968

[47] Lure A. A., Analiticheskaya mekhanika, GIFML, M., 1961

[48] Morozov V. M., “Ob ustoichivosti dvizheniya girostata pod deistviem gravitatsionnykh magnitnykh i aerodinamicheskikh momentov”, Kosmich. issled., 5:5 (1967), 727–732

[49] Morozov V. M., “Ob ustoichivosti otnositelnogo ravnovesiya sputnika pri deistvii gravitatsionnogo, magnitnogo i aerodinamicheskogo momentov”, Kosmich. issled., 7:3 (1969), 395–401

[50] Morozov V. M., “Ob ustoichivosti otnositelnogo ravnovesiya sputnika pri deistvii gravitatsionnogo i aerodinamicheskogo momentov”, Vestn. Mosk. un-ta. Ser. Mat. Mekh., 1968, no. 6, 109–111

[51] Morozov V. M., “Ustoichivost dvizheniya kosmicheskikh apparatov”, Itogi nauki i tekhniki. Obschaya mekhanika, VINITI, M., 1971, 1–83

[52] Morozov V. M., Kalenova V. I., “Upravlenie sputnikom pri pomoschi magnitnykh momentov: upravlyaemost i algoritmy stabilizatsii”, Kosmich. issled., 58:3 (2020), 199–207 | DOI

[53] Morozov V. M., Kalenova V. I., “Stabilizatsiya polozheniya ravnovesiya sputnika pri pomoschi magnitnykh i lorentsevykh momentov”, Kosmich. issled., 59:5 (2021), 393–407 | DOI

[54] Morozov V. M., Kalenova V. I., Rak M. G., “O stabilizatsii regulyarnyz pretsessii sputnika pri pomoschi magnitnykh momentov”, Prikl. mat. mekh., 85:4 (2021), 436–453 | DOI

[55] Morozov V. M., Kalenova V. I., “Stabilizatsiya otnositelnogo ravnovesiya sputnika pri pomoschi magnitnykh momentov s uchetom aerodinamicheskikh sil”, Kosmich. issled., 60:3 (2022), 246–253

[56] Ovchinnikov M. Yu., Penkov V. I., Roldugin D. S., Ivanov D. S., Magnitnye sistemy orientatsii malykh sputnikov, IPM im. M. V. Keldysha, M., 2016

[57] Ovchinnikov M. Yu., Roldugin D. S., “Sovremennye algoritmy aktivnoi magnitnoi orientatsii sputnikov”, Kosmicheskie apparaty i tekhnologii., 3:2 (28) (2019), 73–86

[58] Roitenberg Ya. N., Avtomaticheskoe upravlenie, Nauka, M., 1978

[59] Rumyantsev V. V., Ob ustoichivosti statsionarnykh dvizhenii sputnikov, VTs AN SSSR, M., 1967

[60] Sazonov V. V., Chebukov S. Yu., Kuznetsova E. Yu., “Dvukhosnaya zakrutka sputnika v ploskosti orbity”, Kosmich. issled., 38:3 (2000), 296–306

[61] Sarychev V. A., “Voprosy orientatsii iskusstvennykh sputnikov”, Itogi nauki i tekhniki. Issledovanie kosmicheskogo prostranstva. T. 11, VINITI, M., 1978

[62] Sarychev V. A., “Dinamika sputnika pod deistviem gravitatsionnogo i aerodinamicheskogo momentov”, Problemy analiticheskoi mekhaniki i teorii ustoichivosti, Fizmatlit, M., 2009, 111–126

[63] Sarychev V. A., Ovchinnikov M. Yu., “Magnitnye sistemy orientatsii iskusstvennykh sputnikov Zemli”, Itogi nauki i tekhniki. Issledovanie kosmicheskogo prostranstva. T. 23, VINITTI, M., 1985

[64] Tikhonov A. A., “Metod polupassivnoi stabilizatsii kosmicheskogo apparata v geomagnitnom pole”, Kosmich. issled., 41:1 (2003), 69–79

[65] Khentov A. A., “Dvizhenie okolo tsentra mass ekvatorialnogo sputnika na krugovoi orbite pri vzaimodeistvii magnitnogo i gravitatsionnogo polei Zemli”, Prikl. mat. mekh., 1967, 5

[66] Khentov A. A., “Ob ustoichivosti po pervomu priblizheniyu odnogo vrascheniya iskusstvennogo sputnika Zemli vokrug svoego tsentra mass”, Kosmich. issled., 6:5 (1968), 793–795

[67] Chernousko F. L., “Ob ustoichivosti regulyarnykh pretsessii sputnika”, Prikl. mat. mekh., 28:1 (1964), 155–157 | Zbl

[68] Aleksandrov A. Yu., Aleksandrova E. B., Tikhonov A. A., “Stabilization of a programmed rotation mode for a satellite with electrodynamic attitude control system”, Adv. Space Res., 62 (2018), 142–151 | DOI

[69] Aleksandrov A. Yu, Antipov K. A., Platonov A. V., Tikhonov A. A., “Electrodynamic attitude stabilization of a satellite in the König frame”, Nonlinear Dyn., 82 (2015), 1493–1505 | DOI | MR | Zbl

[70] Aleksandrov A. Yu., Tikhonov A. A., “Averaging technique in the problem of Lorentz attitude stabilization of an Earth-pointing satellite”, Aerospace Sci. Techn., 2020, no. 3, 1–12 | MR

[71] Aleksandrov A. Yu., Tikhonov A. A., “Monoaxial electrodynamic stabilization of an artificial Earth satellite in the orbital coordinate system via control with distributed delay”, IEEE Access., 9 (2021), 132623–132630 | DOI

[72] Antipov K. A., Tikchonov A. A., “Multipole models of the geomagnetic field: Construction of the $N$th approximation”, Geomagnetizm and Aeronomy., 53:2 (2013), 271–281

[73] Antipov K. A., Tikhonov A. A., “On satellite electrodynamic attitude stabilization”, Aerospace Sci. Techn., 33 (2014), 92–99 | DOI

[74] Bin Zhou, “Global stabilization of periodic linear systems by bounded controls with application to spacecraft magnetic attitude control”, Automatica., 60 (2015), 145–154 | DOI | MR | Zbl

[75] Brewer J. W., “Kronecker Products and Matrix calculus in system Theory”, IEEE Trans. Circ. Syst., CAS-25:9 (1978), 772–781 | DOI | MR | Zbl

[76] Chang A., “An algebraic characterization of controllability”, IEEE Trans. Automat. Control., AC-10:1 (1965), 112–113 | DOI

[77] Cubas J., de Ruiter A., “Magnetic control without attitude determination for spinning spacecraft”, Acta Astronaut., 169 (2020), 108–123 | DOI

[78] Cubas J., Farrahi A., Pindado S., “Magnetic attitude control for satellites in polar or sun synchronous orbits”, J. Guid. Control Dynam., 38 (2015), 1947–1958 | DOI

[79] Frik M. A., “Attitude stability of satellites subjected to gravity gradient and aerodynamic torques”, AIAA J., 8:10 (1970), 1780–1785 | DOI

[80] Giri D. K., Mukherjee B. K., Sinha M., “Three-axis global magnetic attitude control of Earth-pointing satellites in circular orbit: Three-axis global magnetic attitude control”, Asian J. Control., 19:6 (2017), 2028–2041 | DOI | MR | Zbl

[81] Giri D. K. and Sinha M., “Magneto-Coulombic attitude control of Earth-pointing satellites”, J. Guid. Control Dynam., 37:6 (2014), 1946–1960 | DOI

[82] Giri D. K., Sinha M., “Lorentz Force Based Satellite Attitude Control”, J. Inst. Eng. India. Ser. C., 97 (2016), 279–290 | DOI

[83] Hautus M. L. J., “Controllability and observability conditions of linear autonomous systems”, Proc. Koninkl. Nederl. Akad. Wetensch. Ser. A., 72 (1969), 443–448 | MR | Zbl

[84] Huang X., Yan Y., “Fully actuated spacecraft attitude control via the hybrid magnetocoulombic and magnetic torques”, J. Guid. Control Dynam., 40:12 (2017), 1–8 | DOI

[85] Ivanov D. S., Ovchinnikov M. Yu., Penkov V. I., Roldugin D. S., Doronin D. M., Ovchinnikov A. V., “Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties”, Acta Astronaut., 132 (2017), 103–110 | DOI

[86] Kalenova V. I., Morozov V. M., “Novel approach to attitude stabilization of satellite using geomagnetic Lorentz forces”, Aerospace. Sci. Technol., 106 (2020), 106105 | DOI

[87] Kalman R. E., Lectures on Controllability and Observability, C.I.M.E., Bologna, Italy, 1969 | MR | Zbl

[88] Laub A. J., Arnold W. F., “Controllability and observability criteria for multivariable linear second-order models”, IEEE Trans. Automat. Control., 29:2 (1984), 163–165 | DOI | MR | Zbl

[89] Likins P. W., “Stability of a symmetrical satellite in attitudes fixed in an orbiting reference frame”, J. Astronaut. Sci., 12:1 (1965), 18–24

[90] Morozov V. M., Kalenova V. I., “Linear time-varying systems and their applications to cosmic problems”, AIP Conf. Proc., 1959 (2018), 020003 | DOI | MR

[91] Mostaza-Prieto D., Roberts P. C. E., “Methodology to analyze attitude stability of satellites subjected to aerodynamic torques”, J. Guid. Control Dynam., 39 (2016), 437–449 | DOI

[92] Nababi M., Barati M., “Mathematical modeling and simulation of the Earth's magnetic field: A comparative study of the models on the spacecraft of attitude control application”, Appl. Math. Model., 46 (2017), 365–381 | DOI | MR

[93] Ovchinnikov M. Yu., Penkov V. I., Roldugin D. S., Pichuzhkina A. V., “Geomagnetic field models for satellite angular motion studies”, Acta Astronaut., 144 (2018), 171–180 | DOI

[94] Ovchinnikov M. Yu., Roldugin D. S., “A survey on active magnetic attitude control algorithms for small satellites”, Progr. Aerospace Sci., 109 (2019), 100546 | DOI

[95] Ovchinnikov M. Yu., Roldugin D. S., Penkov V. I., “Three-axis active magnetic attitude control asymptotical study”, Acta Astronaut., 110 (2015), 279–286 | DOI

[96] Ovchinnikov M. Yu., Roldugin D. S., Ivanov D. S., Penkov V. I., “Choosing control parameters for three axis magnetic stabilization in orbital frame”, Acta Astronaut., 116 (2015), 74–68 | DOI

[97] Psiaki M., “Magnetic torque attitude control via asymptotic periodic linear quadratic regulation”, J. Guid. Control Dynam., 24:2 (2001), 386–394 | DOI | MR

[98] Psiaki M. L., “Nanosatellite attitude stabilization using passive aerodynamics and active magnetic torquing”, J. Guid. Control Dynam., 27 (2004), 347–355 | DOI

[99] Psiaki M. L., Martel F., Pal P. K., “Three-axis attitude determination via Kalman filtering of magnetometer data”, J. Guid. Control Dynam., 13:3 (1990), 506–514 | DOI

[100] Psiaki M. L., Oshman Y., “Spacecraft attitude rate estimation from geomagnetic fiend measurements”, J. Guid. Control Dynam., 26:2 (2003), 244–252 | DOI | MR

[101] Sarychev V. A., Mirer S. A., “Relative equilibria of a satellite subjected to gravitational and aerodynamic torques”, Celestial Mech. Dynam. Astronom., 76:1 (2000), 55–68 | DOI | MR | Zbl

[102] Sarychev V. A., Mirer S. A., Degtyarev A. A., Duarte E. K., “Investigation of equilibria of a satellite subjected to gravitational and aerodynamic torques”, Celestial Mech. Dynam. Astronom., 97:4 (2007), 267–287 | DOI | MR | Zbl

[103] Searcy J. D., Pernicka H. J., “Magnetometer-only attitude determination using novel two-step Kalman filter approach”, J. Guid. Control Dynam., 35:6 (2012), 1693–1701 | DOI

[104] Silani E., Lovera M., “Magnetic spacecraft attitude control: a survey and some new results”, Control Eng. Pract., 13 (2005), 357–371 | DOI

[105] Sofyal A., Jafarov E. M., Wisniewski R., “Robust and global attitude stabilization of magnetically actuated spacecraft through sliding mode”, Aerospace Sci. Technol., 76 (2018), 91–104 | DOI

[106] Sukhov E., “Numerical approach for bifurcation and orbital stability analysis of periodic motions of a 2-DOF autonomous Hamiltonian system”, J. Phys. Conf. Ser., 1925 (2021), 012013 | DOI

[107] Sutherland R., Kolmanovsky I. K., Girard A. R., “Attitude control of a 2U cubesat by magnetic and air drag torques”, IEEE Trans. Control Syst. Techn., 27:3 (2018), 1047–1059 | DOI

[108] Tortora P., Oshman Y., Santoni F., “Spacecraft angular rate estimation from magnetometer data on using and analytic predictor”, J. Guid. Control Dynam., 27:3 (2004), 365–373 | DOI

[109] Wertz J., Spacecraft Attitude Determination and Control, D. Reidel, Dordrecht, 1978

[110] Yang Y., “Controllability of spacecraft using only magnetic torques”, IEEE Trans. Aerospace Electron. Syst., 52:2 (2016), 955–962

[111] Zhou K., Huang H., Wang X., Sun L., “Magnetic attitude control for Earth-pointing satellites in the presence of gravity gradient”, Aerospace Sci. Techn., 60 (2017), 115–123 | DOI