Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. V
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 115-124
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider problems of stabilization of stationary motions (equilibrium positions and regular precessions) of a satellite near the center of mass in gravitational and magnetic fields under the assumption that the center of mass moves in a circular orbit. Solutions for a number of problems of stabilizing stationary motions of a satellite with the help of magnetic systems are proposed. We present the results of mathematical modeling of the algorithms, which confirm the effectiveness of the developed methodology.
This paper is the final part of the work.
The first part is: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 220. — P. 71–85.
The second part is: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 221. — P. 71–92.
The third part is: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 222. — P. 42–63.
The fourth part is: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 223. — P. 84–106.
Keywords:
linear nonstationary system, reducibility, stationary motions, linearized equations of satellite motions, stabilization, controllability, control algorithms.
@article{INTO_2023_224_a13,
author = {V. M. Morozov and V. I. Kalenova and M. G. Rak},
title = {Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. {V}},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {115--124},
publisher = {mathdoc},
volume = {224},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a13/}
}
TY - JOUR AU - V. M. Morozov AU - V. I. Kalenova AU - M. G. Rak TI - Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. V JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 115 EP - 124 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a13/ LA - ru ID - INTO_2023_224_a13 ER -
%0 Journal Article %A V. M. Morozov %A V. I. Kalenova %A M. G. Rak %T Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. V %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 115-124 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_224_a13/ %G ru %F INTO_2023_224_a13
V. M. Morozov; V. I. Kalenova; M. G. Rak. Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. V. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 115-124. http://geodesic.mathdoc.fr/item/INTO_2023_224_a13/