Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_224_a13, author = {V. M. Morozov and V. I. Kalenova and M. G. Rak}, title = {Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. {V}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {115--124}, publisher = {mathdoc}, volume = {224}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a13/} }
TY - JOUR AU - V. M. Morozov AU - V. I. Kalenova AU - M. G. Rak TI - Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. V JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 115 EP - 124 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a13/ LA - ru ID - INTO_2023_224_a13 ER -
%0 Journal Article %A V. M. Morozov %A V. I. Kalenova %A M. G. Rak %T Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. V %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 115-124 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_224_a13/ %G ru %F INTO_2023_224_a13
V. M. Morozov; V. I. Kalenova; M. G. Rak. Stabilization of stationary motions of a satellite near the center of mass in a~geomagnetic field. V. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 115-124. http://geodesic.mathdoc.fr/item/INTO_2023_224_a13/
[34] Aleksandrov A. Yu., Tikhonov A. A., “Elektrodinamicheskaya stabilizatsiya programmnogo vrascheniya ISZ v orbitalnoi sisteme koordinat”, Vestn. Sankt-Peterburg. un-ta. Ser. 1. Mat. Mekh. Astron., 2012, no. 2, 79–90
[35] Aleksandrov V. V, Lemak S. S., Parusnikov N. A., Lektsii po mekhanike upravlyaemykh sistem, Kurs, M., 2018
[36] Beletskii V. V., Dvizhenie iskusstvennogo sputnika otnositelno tsentra mass, Nauka, M., 1965
[37] Beletskii V. V., Dvizhenie sputnika otnositelno tsentra mass v gravitatsionnom pole, Izd-vo Mosk. un-ta, M., 1975
[38] Beletskii V. V., Khentov A. A., Vraschatelnoe dvizhenie namagnichennogo sputnika, Nauka, M., 1985
[39] Duboshin G. N., “O vraschatelnom dvizhenii iskusstvennykh nebesnykh tel”, Byull. ITA AN SSSR., 7:7 (1960), 511–520 | Zbl
[40] Kalenova V. I., Morozov V. M., Lineinye nestatsionarnye sistemy i ikh prilozheniya k zadacham mekhaniki, Fizmatlit, M., 2010
[41] Kalenova V. I., Morozov V. M., “Privodimost lineinykh nestatsionarnykh sistem vtorogo poryadka s upravleniem i nablyudeniem”, Prikl. mat. mekh., 76:4 (2012), 576–588 | MR
[42] Kalenova V. I., Morozov V. M., “Ob upravlenii lineinymi nestatsionarnymi sistemami spetsialnogo vida”, Izv. RAN. Teoriya i sistemy upravleniya., 2013, no. 3, 6–15 | DOI | MR | Zbl
[43] Kalman R. E., “Ob obschei teorii sistem upravleniya”, Tr. Kongr. IFAK. T. 2, Izd-vo AN SSSR, M., 1961, 521–547
[44] Kalman R. E., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971 | MR
[45] Kondurar V. T., “Chastnye resheniya obschei zadachi o postupatelno-vraschatelnom dvizhenii sferoida pod deistviem prityazheniya shara”, Prikl. mekh. tekhn. fiz/, 36:5 (1960), 890–901 | MR
[46] Krasovskii N. N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968
[47] Lure A. A., Analiticheskaya mekhanika, GIFML, M., 1961
[48] Morozov V. M., “Ob ustoichivosti dvizheniya girostata pod deistviem gravitatsionnykh magnitnykh i aerodinamicheskikh momentov”, Kosmich. issled., 5:5 (1967), 727–732
[49] Morozov V. M., “Ob ustoichivosti otnositelnogo ravnovesiya sputnika pri deistvii gravitatsionnogo, magnitnogo i aerodinamicheskogo momentov”, Kosmich. issled., 7:3 (1969), 395–401
[50] Morozov V. M., “Ob ustoichivosti otnositelnogo ravnovesiya sputnika pri deistvii gravitatsionnogo i aerodinamicheskogo momentov”, Vestn. Mosk. un-ta. Ser. Mat. Mekh., 1968, no. 6, 109–111
[51] Morozov V. M., “Ustoichivost dvizheniya kosmicheskikh apparatov”, Itogi nauki i tekhniki. Obschaya mekhanika, VINITI, M., 1971, 1–83
[52] Morozov V. M., Kalenova V. I., “Upravlenie sputnikom pri pomoschi magnitnykh momentov: upravlyaemost i algoritmy stabilizatsii”, Kosmich. issled., 58:3 (2020), 199–207 | DOI
[53] Morozov V. M., Kalenova V. I., “Stabilizatsiya polozheniya ravnovesiya sputnika pri pomoschi magnitnykh i lorentsevykh momentov”, Kosmich. issled., 59:5 (2021), 393–407 | DOI
[54] Morozov V. M., Kalenova V. I., Rak M. G., “O stabilizatsii regulyarnyz pretsessii sputnika pri pomoschi magnitnykh momentov”, Prikl. mat. mekh., 85:4 (2021), 436–453 | DOI
[55] Morozov V. M., Kalenova V. I., “Stabilizatsiya otnositelnogo ravnovesiya sputnika pri pomoschi magnitnykh momentov s uchetom aerodinamicheskikh sil”, Kosmich. issled., 60:3 (2022), 246–253
[56] Ovchinnikov M. Yu., Penkov V. I., Roldugin D. S., Ivanov D. S., Magnitnye sistemy orientatsii malykh sputnikov, IPM im. M. V. Keldysha, M., 2016
[57] Ovchinnikov M. Yu., Roldugin D. S., “Sovremennye algoritmy aktivnoi magnitnoi orientatsii sputnikov”, Kosmicheskie apparaty i tekhnologii., 3:2 (28) (2019), 73–86
[58] Roitenberg Ya. N., Avtomaticheskoe upravlenie, Nauka, M., 1978
[59] Rumyantsev V. V., Ob ustoichivosti statsionarnykh dvizhenii sputnikov, VTs AN SSSR, M., 1967
[60] Sazonov V. V., Chebukov S. Yu., Kuznetsova E. Yu., “Dvukhosnaya zakrutka sputnika v ploskosti orbity”, Kosmich. issled., 38:3 (2000), 296–306
[61] Sarychev V. A., “Voprosy orientatsii iskusstvennykh sputnikov”, Itogi nauki i tekhniki. Issledovanie kosmicheskogo prostranstva. T. 11, VINITI, M., 1978
[62] Sarychev V. A., “Dinamika sputnika pod deistviem gravitatsionnogo i aerodinamicheskogo momentov”, Problemy analiticheskoi mekhaniki i teorii ustoichivosti, Fizmatlit, M., 2009, 111–126
[63] Sarychev V. A., Ovchinnikov M. Yu., “Magnitnye sistemy orientatsii iskusstvennykh sputnikov Zemli”, Itogi nauki i tekhniki. Issledovanie kosmicheskogo prostranstva. T. 23, VINITTI, M., 1985
[64] Tikhonov A. A., “Metod polupassivnoi stabilizatsii kosmicheskogo apparata v geomagnitnom pole”, Kosmich. issled., 41:1 (2003), 69–79
[65] Khentov A. A., “Dvizhenie okolo tsentra mass ekvatorialnogo sputnika na krugovoi orbite pri vzaimodeistvii magnitnogo i gravitatsionnogo polei Zemli”, Prikl. mat. mekh., 1967, 5
[66] Khentov A. A., “Ob ustoichivosti po pervomu priblizheniyu odnogo vrascheniya iskusstvennogo sputnika Zemli vokrug svoego tsentra mass”, Kosmich. issled., 6:5 (1968), 793–795
[67] Chernousko F. L., “Ob ustoichivosti regulyarnykh pretsessii sputnika”, Prikl. mat. mekh., 28:1 (1964), 155–157 | Zbl
[68] Aleksandrov A. Yu., Aleksandrova E. B., Tikhonov A. A., “Stabilization of a programmed rotation mode for a satellite with electrodynamic attitude control system”, Adv. Space Res., 62 (2018), 142–151 | DOI
[69] Aleksandrov A. Yu, Antipov K. A., Platonov A. V., Tikhonov A. A., “Electrodynamic attitude stabilization of a satellite in the König frame”, Nonlinear Dyn., 82 (2015), 1493–1505 | DOI | MR | Zbl
[70] Aleksandrov A. Yu., Tikhonov A. A., “Averaging technique in the problem of Lorentz attitude stabilization of an Earth-pointing satellite”, Aerospace Sci. Techn., 2020, no. 3, 1–12 | MR
[71] Aleksandrov A. Yu., Tikhonov A. A., “Monoaxial electrodynamic stabilization of an artificial Earth satellite in the orbital coordinate system via control with distributed delay”, IEEE Access., 9 (2021), 132623–132630 | DOI
[72] Antipov K. A., Tikchonov A. A., “Multipole models of the geomagnetic field: Construction of the $N$th approximation”, Geomagnetizm and Aeronomy., 53:2 (2013), 271–281
[73] Antipov K. A., Tikhonov A. A., “On satellite electrodynamic attitude stabilization”, Aerospace Sci. Techn., 33 (2014), 92–99 | DOI
[74] Bin Zhou, “Global stabilization of periodic linear systems by bounded controls with application to spacecraft magnetic attitude control”, Automatica., 60 (2015), 145–154 | DOI | MR | Zbl
[75] Brewer J. W., “Kronecker Products and Matrix calculus in system Theory”, IEEE Trans. Circ. Syst., CAS-25:9 (1978), 772–781 | DOI | MR | Zbl
[76] Chang A., “An algebraic characterization of controllability”, IEEE Trans. Automat. Control., AC-10:1 (1965), 112–113 | DOI
[77] Cubas J., de Ruiter A., “Magnetic control without attitude determination for spinning spacecraft”, Acta Astronaut., 169 (2020), 108–123 | DOI
[78] Cubas J., Farrahi A., Pindado S., “Magnetic attitude control for satellites in polar or sun synchronous orbits”, J. Guid. Control Dynam., 38 (2015), 1947–1958 | DOI
[79] Frik M. A., “Attitude stability of satellites subjected to gravity gradient and aerodynamic torques”, AIAA J., 8:10 (1970), 1780–1785 | DOI
[80] Giri D. K., Mukherjee B. K., Sinha M., “Three-axis global magnetic attitude control of Earth-pointing satellites in circular orbit: Three-axis global magnetic attitude control”, Asian J. Control., 19:6 (2017), 2028–2041 | DOI | MR | Zbl
[81] Giri D. K. and Sinha M., “Magneto-Coulombic attitude control of Earth-pointing satellites”, J. Guid. Control Dynam., 37:6 (2014), 1946–1960 | DOI
[82] Giri D. K., Sinha M., “Lorentz Force Based Satellite Attitude Control”, J. Inst. Eng. India. Ser. C., 97 (2016), 279–290 | DOI
[83] Hautus M. L. J., “Controllability and observability conditions of linear autonomous systems”, Proc. Koninkl. Nederl. Akad. Wetensch. Ser. A., 72 (1969), 443–448 | MR | Zbl
[84] Huang X., Yan Y., “Fully actuated spacecraft attitude control via the hybrid magnetocoulombic and magnetic torques”, J. Guid. Control Dynam., 40:12 (2017), 1–8 | DOI
[85] Ivanov D. S., Ovchinnikov M. Yu., Penkov V. I., Roldugin D. S., Doronin D. M., Ovchinnikov A. V., “Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties”, Acta Astronaut., 132 (2017), 103–110 | DOI
[86] Kalenova V. I., Morozov V. M., “Novel approach to attitude stabilization of satellite using geomagnetic Lorentz forces”, Aerospace. Sci. Technol., 106 (2020), 106105 | DOI
[87] Kalman R. E., Lectures on Controllability and Observability, C.I.M.E., Bologna, Italy, 1969 | MR | Zbl
[88] Laub A. J., Arnold W. F., “Controllability and observability criteria for multivariable linear second-order models”, IEEE Trans. Automat. Control., 29:2 (1984), 163–165 | DOI | MR | Zbl
[89] Likins P. W., “Stability of a symmetrical satellite in attitudes fixed in an orbiting reference frame”, J. Astronaut. Sci., 12:1 (1965), 18–24
[90] Morozov V. M., Kalenova V. I., “Linear time-varying systems and their applications to cosmic problems”, AIP Conf. Proc., 1959 (2018), 020003 | DOI | MR
[91] Mostaza-Prieto D., Roberts P. C. E., “Methodology to analyze attitude stability of satellites subjected to aerodynamic torques”, J. Guid. Control Dynam., 39 (2016), 437–449 | DOI
[92] Nababi M., Barati M., “Mathematical modeling and simulation of the Earth's magnetic field: A comparative study of the models on the spacecraft of attitude control application”, Appl. Math. Model., 46 (2017), 365–381 | DOI | MR
[93] Ovchinnikov M. Yu., Penkov V. I., Roldugin D. S., Pichuzhkina A. V., “Geomagnetic field models for satellite angular motion studies”, Acta Astronaut., 144 (2018), 171–180 | DOI
[94] Ovchinnikov M. Yu., Roldugin D. S., “A survey on active magnetic attitude control algorithms for small satellites”, Progr. Aerospace Sci., 109 (2019), 100546 | DOI
[95] Ovchinnikov M. Yu., Roldugin D. S., Penkov V. I., “Three-axis active magnetic attitude control asymptotical study”, Acta Astronaut., 110 (2015), 279–286 | DOI
[96] Ovchinnikov M. Yu., Roldugin D. S., Ivanov D. S., Penkov V. I., “Choosing control parameters for three axis magnetic stabilization in orbital frame”, Acta Astronaut., 116 (2015), 74–68 | DOI
[97] Psiaki M., “Magnetic torque attitude control via asymptotic periodic linear quadratic regulation”, J. Guid. Control Dynam., 24:2 (2001), 386–394 | DOI | MR
[98] Psiaki M. L., “Nanosatellite attitude stabilization using passive aerodynamics and active magnetic torquing”, J. Guid. Control Dynam., 27 (2004), 347–355 | DOI
[99] Psiaki M. L., Martel F., Pal P. K., “Three-axis attitude determination via Kalman filtering of magnetometer data”, J. Guid. Control Dynam., 13:3 (1990), 506–514 | DOI
[100] Psiaki M. L., Oshman Y., “Spacecraft attitude rate estimation from geomagnetic fiend measurements”, J. Guid. Control Dynam., 26:2 (2003), 244–252 | DOI | MR
[101] Sarychev V. A., Mirer S. A., “Relative equilibria of a satellite subjected to gravitational and aerodynamic torques”, Celestial Mech. Dynam. Astronom., 76:1 (2000), 55–68 | DOI | MR | Zbl
[102] Sarychev V. A., Mirer S. A., Degtyarev A. A., Duarte E. K., “Investigation of equilibria of a satellite subjected to gravitational and aerodynamic torques”, Celestial Mech. Dynam. Astronom., 97:4 (2007), 267–287 | DOI | MR | Zbl
[103] Searcy J. D., Pernicka H. J., “Magnetometer-only attitude determination using novel two-step Kalman filter approach”, J. Guid. Control Dynam., 35:6 (2012), 1693–1701 | DOI
[104] Silani E., Lovera M., “Magnetic spacecraft attitude control: a survey and some new results”, Control Eng. Pract., 13 (2005), 357–371 | DOI
[105] Sofyal A., Jafarov E. M., Wisniewski R., “Robust and global attitude stabilization of magnetically actuated spacecraft through sliding mode”, Aerospace Sci. Technol., 76 (2018), 91–104 | DOI
[106] Sukhov E., “Numerical approach for bifurcation and orbital stability analysis of periodic motions of a 2-DOF autonomous Hamiltonian system”, J. Phys. Conf. Ser., 1925 (2021), 012013 | DOI
[107] Sutherland R., Kolmanovsky I. K., Girard A. R., “Attitude control of a 2U cubesat by magnetic and air drag torques”, IEEE Trans. Control Syst. Techn., 27:3 (2018), 1047–1059 | DOI
[108] Tortora P., Oshman Y., Santoni F., “Spacecraft angular rate estimation from magnetometer data on using and analytic predictor”, J. Guid. Control Dynam., 27:3 (2004), 365–373 | DOI
[109] Wertz J., Spacecraft Attitude Determination and Control, D. Reidel, Dordrecht, 1978
[110] Yang Y., “Controllability of spacecraft using only magnetic torques”, IEEE Trans. Aerospace Electron. Syst., 52:2 (2016), 955–962
[111] Zhou K., Huang H., Wang X., Sun L., “Magnetic attitude control for Earth-pointing satellites in the presence of gravity gradient”, Aerospace Sci. Techn., 60 (2017), 115–123 | DOI