Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_224_a0, author = {A. V. Arguchintsev and V. P. Poplevko}, title = {Variation optimality condition of a boundary control in a composite model of linear differential equations of different types}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--9}, publisher = {mathdoc}, volume = {224}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a0/} }
TY - JOUR AU - A. V. Arguchintsev AU - V. P. Poplevko TI - Variation optimality condition of a boundary control in a composite model of linear differential equations of different types JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 3 EP - 9 VL - 224 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_224_a0/ LA - ru ID - INTO_2023_224_a0 ER -
%0 Journal Article %A A. V. Arguchintsev %A V. P. Poplevko %T Variation optimality condition of a boundary control in a composite model of linear differential equations of different types %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 3-9 %V 224 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_224_a0/ %G ru %F INTO_2023_224_a0
A. V. Arguchintsev; V. P. Poplevko. Variation optimality condition of a boundary control in a composite model of linear differential equations of different types. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2023_224_a0/
[1] Aponin Yu. M., Aponina E. A., Kuznetsov Yu. A., “Matematicheskoe modelirovanie prostranstvenno-vremennoi dinamiki vozrastnoi struktury populyatsii rastenii”, Mat. biologiya i bioinformatika., 1:1 (2006), 1–16
[2] Arguchintsev A. V., Kedrin V. S., Kedrina M. S., “Variatsionnoe uslovie optimalnosti v zadache upravleniya giperbolicheskimi uravneniyami s dinamicheskimi granichnymi usloviyami”, Vestn. Buryat. gos. un-ta. Mat. inform., 2021, no. 1, 13–23 | MR
[3] Arguchintsev A. V., Poplevko V. P., “Variatsionnoe uslovie optimalnosti v zadache upravleniya lineinoi giperbolicheskoi sistemoi pervogo poryadka s zapazdyvaniem na granitse”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 212 (2022), 3–9
[4] Arguchintsev A. V., Srochko V. A., “Protsedura regulyarizatsii bilineinykh zadach optimalnogo upravleniya na osnove konechnomernoi modeli”, Vestn. S.-Peterburg. un-ta. Ser.E10. Prikl. mat. Inform. Protsessy. upravl., 18:1 (2022), 179–187 | MR
[5] Bokmelder E. P., Dykhta V. A., Moskalenko A. I. i dr., Usloviya ekstremuma i konstruktivnye metody resheniya v zadachakh optimizatsii giperbolicheskikh sistem, Nauka, Novosibirsk, 1993 | MR
[6] Vasilev O. V., Srochko V. A., Terletskii V. A., Metody optimizatsii i ikh prilozheniya. Ch. 2. Optimalnoe upravlenie, Nauka, Novosibirsk, 1990 | MR
[7] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983
[8] Riznichenko G. Yu., Rubin A. B., Matematicheskie metody v biologii i ekologii. Biofizicheskaya dinamika produktsionnykh protsessov. Ch. 1, Yurait, M., 2019
[9] Rozonoer L. I., “Printsip maksimuma L. S. Pontryagina v teorii optimalnykh sistem, I”, Avtomat. telemekh., 20:10 (1959), 1320–1334
[10] Srochko V. A., Aksenyushkina E. V., “Parametrizatsiya nekotorykh zadach upravleniya lineinymi sistemami”, Izv. Irkutsk. gos. un-ta. Ser. mat., 30 (2019), 83–98 | MR | Zbl
[11] Arguchintsev A., Poplevko V., “An optimal control problem by a hybrid system of hyperbolic and ordinary differential equations”, Games., 12:1 (2021), 23 | MR | Zbl
[12] Arguchintsev A. V., Poplevko V. P., Sinitsyn A. V., “Variational optimality condition in control of hyperbolic systems with boundary delay parameters”, Cybernet. Phys., 11:2 (2022), 61–-66 | MR
[13] Biral F., Bertolazzi E., Bosetti P., “Notes on numerical methods for solving optimal control problems”, IEEJ J. Ind. Appl., 5 (2016), 154–-166
[14] Rao A., “A survey of numerical methods for optimal control”, Adv. Astron. Sci., 135 (2009), 1–32 | Zbl
[15] Wolfersdorf L., “A counterexample to the maximum principle of Pontryagin for a class of distributed parameter systems”, Z. Angew. Math. Mech., 6:4 (1980), 204 | DOI | MR