Shadow problem and isometric embeddings of pseudospherical surfaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 69-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The shadow problem for horospheres is related to the problem of global isometric embedding of surfaces of revolution of constant negative curvature into the three-dimensional Euclidean space. Euclidean surfaces of revolution of constant negative curvature are globally isometric to parts of tangent cones of horospheres in the three-dimensional Lobachevsky space. In this work, meridians of Euclidean pseudospherical surfaces of revolution are expressed in terms of metric characteristics in the hyperbolic space, namely, in terms of the distance from the vertex of the tangent cone to the horosphere or through the distance from the polar of the vertex to the horosphere.
Keywords: shadow problem, surface of constant curvature, pseudosphere, horosphere, Lobachevsky space.
@article{INTO_2023_223_a6,
     author = {A. V. Kostin},
     title = {Shadow problem and isometric embeddings of pseudospherical surfaces},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {223},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_223_a6/}
}
TY  - JOUR
AU  - A. V. Kostin
TI  - Shadow problem and isometric embeddings of pseudospherical surfaces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 69
EP  - 78
VL  - 223
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_223_a6/
LA  - ru
ID  - INTO_2023_223_a6
ER  - 
%0 Journal Article
%A A. V. Kostin
%T Shadow problem and isometric embeddings of pseudospherical surfaces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 69-78
%V 223
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_223_a6/
%G ru
%F INTO_2023_223_a6
A. V. Kostin. Shadow problem and isometric embeddings of pseudospherical surfaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 69-78. http://geodesic.mathdoc.fr/item/INTO_2023_223_a6/

[1] Zelinskii Yu. B.,Vygovskaya I. Yu., Stefanchuk M. V., “Obobschenno vypuklye mnozhestva i zadacha o teni”, Ukr. mat. zh., 67:12 (2015), 1658–1666

[2] Zelinskii Yu. B.,Vygovskaya I. Yu., Dakkhil Kh. K., “Zadacha o teni i smezhnye zadachi”, Proc. Int. Geometry Center., 9:3-4 (2016), 50–58 | MR

[3] Zelinskii Yu. B.,Vygovskaya I. Yu., Dakkhil Kh. K., “Zadacha o teni dlya sharov fiksirovannogo radiusa”, Ukr. mat. visn., 13:4 (2016), 599–602

[4] Kostin A. V., “Ob asimptoticheskikh liniyakh na psevdosfericheskikh poverkhnostyakh”, Vladikavkaz. mat. zh., 21:1 (2019), 16–26 | MR | Zbl

[5] Kostin A. V., “O gelikoidakh Dini v prostranstve Minkovskogo”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 180 (2020), 50–57 | DOI

[6] Kostin A. V., “Evolyuty meridianov i asimptoticheskie na psevdosferakh”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 169 (2019), 23–30 | DOI

[7] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969

[8] Khudaiberganov G., Ob odnorodno-polinomialno vypukloi obolochke semeistva sharov, Dep. v VINITI 21.02.1982, No 1772

[9] Blanusha D., “$C^\infty$-Isometric imbeddings of the hyperbolic plane and of cylinders with hyperbolic metric in spherical spaces”, Ann. Math. Pura Appl., 57 (1962), 321–337 | DOI | MR

[10] Blanusha D., “$C^\infty$-Isometric imbeddings of cylinders with hyperbolic metric in Euclidean 7-space”, Glas. Mat.-Fiz. Astron., 11:3-4 (1956), 243–246 | MR

[11] Klein F., Vorlesungen über nicht-euklidische Geometrie, Verlag von Julius Springer, 1928 | MR

[12] Kostin A. V., “Problem of shadow in the Lobachevskii space”, Ukr. Math. J., 70:11 (2019), 1758–1766 | DOI | MR | Zbl

[13] Kostin A. V., “Some generalisations of the shadow problem in the Lobachevsky space”, Ukr. Math. J., 73:1 (2021), 61–68 | DOI | MR | Zbl

[14] Kostin A. V., “Asimptoticheskie na psevdosferakh i ugol parallelnosti”, Izv. vuzov. Mat., 2021, no. 6, 25–34 | Zbl

[15] Minding F., “Über die Biegung krummer Flächen”, J. Reine Angew. Math., 18 (1838), 365–368 | MR

[16] Minding F., “Wie sich entscheiden lässt, ob zwei gegebene krumme Flächen auf einander abwickelbar sind oder nicht; nebst Bemerkungen über die Flächen von unveränderlichem Krümmungsmasse”, J. Reine Angew. Math., 19 (1839), 370–387 | MR

[17] Minding F., “Beiträge zur Theorie der kürzerten Linien auf krummen Flächen”, J. Reine Angew. Math., 20 (1840), 323–327 | MR