Generalized Bochner technique and its application to the study of projective and conformal mappings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 112-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the generalized Bochner technique, which is a natural development of the classical Bochner technique. As an illustration, we prove some vanishing theorems on Ricci solitons, conformal and projective mappings of complete Riemannian manifolds.
Mots-clés : Bochner technique, Ricci soliton
Keywords: complete Riemannian manifold, vanishing theorem, conformal mapping, projective mapping.
@article{INTO_2023_223_a10,
     author = {S. E. Stepanov and J. Mike\v{s} and I. I. Tsyganok},
     title = {Generalized {Bochner} technique and its application to the study of projective and conformal mappings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {112--122},
     publisher = {mathdoc},
     volume = {223},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_223_a10/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - J. Mikeš
AU  - I. I. Tsyganok
TI  - Generalized Bochner technique and its application to the study of projective and conformal mappings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 112
EP  - 122
VL  - 223
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_223_a10/
LA  - ru
ID  - INTO_2023_223_a10
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A J. Mikeš
%A I. I. Tsyganok
%T Generalized Bochner technique and its application to the study of projective and conformal mappings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 112-122
%V 223
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_223_a10/
%G ru
%F INTO_2023_223_a10
S. E. Stepanov; J. Mikeš; I. I. Tsyganok. Generalized Bochner technique and its application to the study of projective and conformal mappings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 4, Tome 223 (2023), pp. 112-122. http://geodesic.mathdoc.fr/item/INTO_2023_223_a10/

[1] Besse A. L., Mnogoobraziya Einshteina. V 2 tt., Mir, M., 1990

[2] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii. V 2 tt., Nauka, M., 1981 | MR

[3] Stepanov S. E., Tsyganok I. I., “Infinitezimalnye garmonicheskie preobrazovaniya i solitony Richchi na polnykh rimanovykh mnogoobraziyakh”, Izv. vuzov. Mat., 2010, no. 3, 97–101 | MR | Zbl

[4] Stepanov S. E., Tsyganok I. I., “Polnaya minimalnaya giperpoverkhnost v prostranstve de Sittera pervogo roda”, Differ. geom. mnogoobr. figur., 49 (2018), 153–156 | Zbl

[5] Stepanov S. E., Shelepova V. N., “Zametka o solitonakh Richchi”, Mat. zametki., 86:3 (2009), 474–477 | DOI | MR | Zbl

[6] Yano K., Bokhner S., Krivizna i chisla Betti, M., 1957

[7] Adams S. R., “Superharmonic functions on foliations”, Trans. Am. Math. Soc., 330:2 (1992), 625–635 | DOI | MR | Zbl

[8] Aleksandrova I. A., Mikeš J., Stepanov S. E., Tsyganok I. I., “Liouville type theorems in the theory of mappings of complete Riemannian manifolds”, J. Math. Sci., 221:6 (2017), 737–744 | DOI | MR

[9] Almira J. M., Romero A., “A new proof of a classical result on the topology of orientable connected and compact surfaces by means of the Bochner technique”, Rend. Semin. Mat. Univ. Politec. Torino., 77:1 (2019), 131–136 | MR | Zbl

[10] Berard P. H., “From vanishing theorems to estimating theorems: the Bochner technique revisited”, Bull. Am. Math. Soc., 19:2 (1988), 371–406 | DOI | MR | Zbl

[11] Bishop R. L., O'Neil B., “Manifolds of negative curvature”, Trans. Am. Math. Soc., 145 (1969), 1–9 | DOI | MR

[12] Caminha A., “The geometry of closed conformal vector fields on Riemannian spaces”, Bull. Braz. Math. Soc., 42:2 (2011), 277–300 | DOI | MR | Zbl

[13] Caminha A., Souza P., Camargo F., “Complete foliations of space forms by hypersufaces”, Bull. Braz. Math. Soc., 41:3 (2010), 339–353 | DOI | MR | Zbl

[14] Cheeger J., Gromoll D., “On the structure of complete manifolds of nonnegative curvature”, Ann. Math., 96 (1972), 413–443 | DOI | MR | Zbl

[15] Chen X., Shen Z., “A comparison theorem on the Ricci curvature in projective geometry”, Ann. Glob. Anal. Geom., 23 (2003), 141–155 | DOI | MR | Zbl

[16] Chow C., Lu P., Ni L., Hamilton's Ricci Flow, Am. Math. Soc., Beijing–New York, 2006 | MR

[17] Gaffney M. P., “A special Stokes's theorem for complete Riemannian manifolds”, Ann. Math. 2 Ser., 60:1 (1954), 140–145 | DOI | MR | Zbl

[18] Gallot S., Meyer D., “Operateur de courbure et laplacien des formes différentielles d'une varieté riemannianne”, J. Math. Pures. Appl., 54 (1975), 259–284 | MR | Zbl

[19] Greene R. E., Wu H., “On the subharmonicity and plurisubharmonicity of geodesically convex functions”, Indiana Univ. Math. J., 22 (1972/73), 641–653 | DOI | MR

[20] Greene R. E., Wu H., “$C^\infty$ convex functions and manifolds of positive curvature”, Acta Math., 137:3-4 (1976), 209–245 | DOI | MR

[21] Greene R. E., Shiohama K., “Convex functions on complete noncompact manifolds: topological structure”, Invent. Math., 63:1 (1981), 129–157 | DOI | MR | Zbl

[22] Greene R. E., Shiohama K., “Convex functions on complete noncompact manifolds: differentiable structure”, Ann. Sci. Ec. Norm. Super., 14:4 (1982), 357–367 | DOI | MR

[23] Grigor'yan A., “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Am. Math. Soc., 36:2 (1999), 135–249 | DOI | MR | Zbl

[24] Grigor'yan A., Heat Kernel and Analysis on Manifolds, Am. Math. Soc., Boston, 2009 | MR | Zbl

[25] Gromoll D., Meyer W., “On complete open manifolds of positive curvature”, Ann. Math., 90 (1969), 75–90 | DOI | MR | Zbl

[26] Jost J., Riemannian Geometry and Geometric Analysis, Springer, 2005 | MR | Zbl

[27] Karp L., “On Stokes' theorem for noncompact manifolds”, Proc. Am. Math. Soc., 82:3 (1981), 487–490 | MR | Zbl

[28] Kim S., “Volume and projective equivalence between Riemannian manifolds”, Ann. Glob. Anal. Geom., 27 (2005), 47–52 | DOI | MR | Zbl

[29] Li P., Schoen R., “$L^p$ and mean value properties of subharmonic functions on Riemannian manifolds”, Acta Math., 153:1 (1984), 279–301 | MR | Zbl

[30] Mikeš J. et al., Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc, 2019 | MR | Zbl

[31] Petersen P., Riemannian Geometry, Springer, New York, 2016 | MR | Zbl

[32] Petersen P., Wink M., “The Bochner technique and weighted curvatures”, SIGMA., 16 (2020), 064 | MR | Zbl

[33] Petersen P., Wink M., “New curvature conditions for the Bochner technique”, Invent. Math., 224:1 (2021), 33–54 | DOI | MR | Zbl

[34] Pigola S., Rigoli M., Setti A. G., Maximum Principles on Riemannian Manifolds and Applications, Am. Math. Soc., Providence, Rhode Island, 2005 | MR | Zbl

[35] Pigola S., Rigoli M., Setti A. G., Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique, Birkhäuser Verlag, Berlin, 2008 | MR | Zbl

[36] Pucci P., Serrin J., “The strong maximum principle revisited”, J. Differ. Eqs., 196:1 (2004), 1–66 | DOI | MR | Zbl

[37] Richard S., Yau S.-T., Lectures on Differential Geometry, International Press, Boston, 2010

[38] Romero A., “The introduction of Bochner's technique on Lorentzian manifolds”, Nonlin. Anal., 47 (2001), 3047–3059 | DOI | MR | Zbl

[39] Schoen R., “Conformal deformation of a Riemannian metric to constant curvature”, J. Differ. Geom., 20 (1984), 479–495 | DOI | MR | Zbl

[40] Schoen R., Yau S.-T., Lectures on Harmonic Maps, International Press, Boston, 1994 | MR

[41] Stepanov S. E., “Vanishing theorems in affine, Riemann and Lorentzian geometries”, J. Math. Sci., 141:1 (2007), 929–964 | DOI | MR

[42] Stepanov S. E., Mikeš J., “The generalized Landau-Raychaudhuri equation and its applications”, Int. J. Geom. Meth. Mod. Phys., 12:8 (2015), 1560026 | DOI | MR | Zbl

[43] Stepanov S. E., Mikeš J., “Application of the Hopf maximum principale to the theory of geodesic mappings”, Kraguevac J. Math., 45:5 (2021), 781–786 | DOI | MR | Zbl

[44] Stepanov S. E., Tsyganok I. I., “A remark on the mixed scalar curvature of a manifold with two orthogonal totally umbilical distributions”, Adv. Geom., 19:3 (2019), 291–296 | DOI | MR | Zbl

[45] Topping P., Lectures on the Ricci Flow, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[46] Wu H.-H., “A remark on the Bochner technique in differential geometry”, Proc. Am. Math. Soc., 78:3 (1980), 403–408 | DOI | MR | Zbl

[47] Wu H.-H., The Bochner Technique in Differential Geometry, Harwood Academic, 1988 | MR

[48] Xiao J., Qiu C., Zhong T., “Bochner–Kodaira techniques on Kähler Finsler manifolds”, Chin. Ann. Math. Ser. B., 36:1 (2015), 125–140 | DOI | MR | Zbl

[49] Yano K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970 | MR | Zbl

[50] Yau S.-T., “Remarks on conformal transformations”, J. Differ. Geom., 8 (1973), 369–381 | DOI | MR | Zbl

[51] Yau S.-T., “Non-existence of continuous convex functions on certain Riemannian manifolds”, Math. Ann., 207 (1974), 269–270 | DOI | MR | Zbl

[52] Yau S.-T., “Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry”, Indiana Univ. Math. J., 25 (1976), 659–670 | DOI | MR | Zbl

[53] Yau S.-T., “On the heat kernel of a complete Riemannian manifold”, J. Math. Pures Appl., 57:2 (1978), 191–201 | MR | Zbl