On the limits of K\"ahler--Ricci flow on Fano group compactifications
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 3, Tome 222 (2023), pp. 30-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a connected, complex reductive group. In this paper, we review the results on semistable limit of $\mathbb Q$-Fano compactifications and the characterization of minimizers of Futaki invariants. Using the algebraic uniqueness, we construct the limiting space of the Kähler–Ricci flow on Fano group compactifications of rank $2$.
Mots-clés : Kähler–Ricci soliton
Keywords: Kähler–Ricci flow, $\mathbb{Q}$-Fano compactification, $K$-stability.
@article{INTO_2023_222_a3,
     author = {Ya. Li and Zh. Li},
     title = {On the limits of {K\"ahler--Ricci} flow on {Fano} group compactifications},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {30--41},
     publisher = {mathdoc},
     volume = {222},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_222_a3/}
}
TY  - JOUR
AU  - Ya. Li
AU  - Zh. Li
TI  - On the limits of K\"ahler--Ricci flow on Fano group compactifications
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 30
EP  - 41
VL  - 222
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_222_a3/
LA  - ru
ID  - INTO_2023_222_a3
ER  - 
%0 Journal Article
%A Ya. Li
%A Zh. Li
%T On the limits of K\"ahler--Ricci flow on Fano group compactifications
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 30-41
%V 222
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_222_a3/
%G ru
%F INTO_2023_222_a3
Ya. Li; Zh. Li. On the limits of K\"ahler--Ricci flow on Fano group compactifications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 3, Tome 222 (2023), pp. 30-41. http://geodesic.mathdoc.fr/item/INTO_2023_222_a3/

[1] Okunkov A. Yu., “Zamechanie o polinome Gilberta sfericheskogo mnogoobraziya”, Funkts. anal. prilozh., 31:2 (1997), 82–85

[2] Popov V. L., “Styagivanie deistvii reduktivnykh algebraicheskikh grupp”, Mat. sb., 130 (172):3 (7) (1986), 310–334

[3] Timashev D. A., “Ekvivariantnye kompaktifikatsii reduktivnykh grupp”, Mat. sb., 194:4 (2003), 119–146

[4] Alexeev V. A., Brion M., “Stable reductive varieties, II: Projective case”, Adv. Math., 184 (2004), 382–408

[5] Alexeev V. A., Katzarkov L. V., “On K-stability of reductive varieties”, Geom. Funct. Anal., 15 (2005), 297–310

[6] Bamler R., “Convergence of Ricci flows with bounded scalar curvature”, Ann. Math., 188 (2018), 753–831

[7] Berman R., Boucksom S., Eyssidieux P., Guedj V., and Zeriahi A., “Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties”, J. Reine Angew. Math., 751 (2019), 27–89

[8] Berman R., Witt-Nystrom D., Complex optimal transport and the pluripotential theory of Kähler–Ricci solitons, arXiv: 1401.8264 [math DG]

[9] Blum H., Liu Y.-Ch., Xu Ch.-Y., Zhuang Z.-Q., The existence of the Kähler–Ricci soliton degeneration, arXiv: 2103.15278 [math AG]

[10] Boucksom S., Hisamoto T., Jonsson M., “Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs”, Ann. Inst. Fourier., 67 (2017), 743–841

[11] Cao H., “Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds”, Invent. Math., 81 (1985), 359–372

[12] Chen X.-X., Donaldson S., Sun S., “Kähler–Einstein metrics on Fano manifolds, I-III”, J. Am. Math. Soc., 28 (2015), 183–278

[13] Chen X.-X., Wang B., “Space of Ricci flows. Part B: Weak compactness of the flows”, J. Differ. Geom., 116 (2020), 1–123

[14] Chen X.-X., Sun S., Wang B., “Kähler–Ricci flow, Kähler-Einstein metric, and K-stability”, Geom. Topol., 22 (2018), 3145–3173

[15] V. Datar and G. Szèkelyhidi, “Kähler–Einstein metrics along the smooth continuity method”, Geom. Funct. Anal., 26 (2016), 975–1010

[16] Delcroix T., “K-Stability of Fano spherical varieties”, Ann. Sci. Éc. Norm. Supér. (4)., 53 (2020), 615–662

[17] Donaldson S., “Scalar curvature and stability of toric varieties”, J. Differ. Geom., 62 (2002), 289–348

[18] Han J., Li Ch., On the Yau–Tian–Donaldson conjecture for generalized Kähler–Ricci soliton equations, arXiv: 2006.00903 [math.DG]

[19] Han J.-Y., Li Ch., “Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties”, arXiv: 2009.01010 [math.DG]

[20] Li Ch., “$G$-uniform stability and Kähler–Einstein metrics on Fano varieties”, Invent. Math., 227 (2022), 661–744

[21] Li Ch., Wang X.-W., Xu Ch.-Y., “Algebracity of metric tangent cones and equivariant K-stability”, J. Am. Math. Soc., 34 (2021), 1175–1214

[22] Li Y., Li Zh.-Y., Equivariant $\mathbb R$-test configurations and semistable limits of $\mathbb Q$-Fano group compactifications, arXiv: 2103.06439 [math.DG]

[23] Li Y., Zhou B., K-stability and polystable degenerations of polarized spherical varieties, arXiv: 2111.04269 [math.DG]

[24] Tian G., “Kähler–Einstein metrics with positive scalar curvature”, Invent. Math., 130 (1997), 1–37

[25] Tian G., “K-stability and Kähler–Einstein metrics”, Commun. Pure Appl. Math., 68 (2015), 1085–1156

[26] Tian G., Zhang Sh.-J., Zhang Zh.-L., Zhu X.-H., “Perelman's entropy and Kähler–Ricci flow an a Fano Manifold”, Trans. Am. Math. Soc., 365 (2013), 6669–6695

[27] Tian G., Zhang Zh.-L., “Regularity of Kähler–Ricci flows on Fano manifolds”, Acta Math., 216 (2016), 127–176

[28] Tian G., Zhu X.-H., “Uniqueness of Kähler–Ricci solitons”, Acta Math., 184 (2000), 271–305

[29] Tian G., Zhu X.-H., “Convergence of the Kähler–Ricci flow”, J. Am. Math. Sci., 17 (2006), 675–699

[30] Tian G., Zhu X.-H., “Convergence of the Kähler–Ricci flow on Fano manifolds”, J. Reine Angew Math., 678 (2013), 223–245

[31] Timashev D. A., Homogenous Spaces and Equivariant Embeddings, Springer-Verlag, Berlin–Heidelberg, 2011

[32] Wang F., Zhou B., Zhu X.-H., “Modified Futaki invariant and equivariant Riemann–Roch formula”, Adv. Math., 286 (2016), 1205–1235

[33] Yao Y., Mabuchi solitons and relative Ding stability of toric Fano varieties, arXiv: 1701.04016 [math.DG]