Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_222_a2, author = {P. N. Klepikov and E. D. Rodionov and O. P. Khromova}, title = {Invariant {Ricci} solitons on metric {Lie} groups with a semisymmetric connection}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {19--29}, publisher = {mathdoc}, volume = {222}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_222_a2/} }
TY - JOUR AU - P. N. Klepikov AU - E. D. Rodionov AU - O. P. Khromova TI - Invariant Ricci solitons on metric Lie groups with a semisymmetric connection JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 19 EP - 29 VL - 222 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_222_a2/ LA - ru ID - INTO_2023_222_a2 ER -
%0 Journal Article %A P. N. Klepikov %A E. D. Rodionov %A O. P. Khromova %T Invariant Ricci solitons on metric Lie groups with a semisymmetric connection %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 19-29 %V 222 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_222_a2/ %G ru %F INTO_2023_222_a2
P. N. Klepikov; E. D. Rodionov; O. P. Khromova. Invariant Ricci solitons on metric Lie groups with a semisymmetric connection. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 3, Tome 222 (2023), pp. 19-29. http://geodesic.mathdoc.fr/item/INTO_2023_222_a2/
[1] Klepikov P. N., Oskorbin D. N., “Odnorodnye invariantnye solitony Richchi na chetyrekhmernykh gruppakh Li”, Izv. Alt. gos. un-ta., 85:1/2 (2015), 115–122
[2] Klepikov P. N., Rodionov E. D., Khromova O. P., “Ob invariantnykh solitonakh Richchi na trekhmernykh metricheskikh gruppakh Li s polusimmetricheskoi svyaznostyu”, Izv. vuzov. Mat., 2021, no. 8, 80–85
[3] Rodionov E. D., Slavskii V. V., Chibrikova L. N., “Lokalno konformno odnorodnye psevdorimanovy prostranstva”, Mat. tr., 9:1 (2006), 130–168
[4] Agricola I., Kraus M., “Manifolds with vectorial torsion”, Differ. Geom. Appl., 46 (2016), 130–147
[5] Agricola I., Thier C., “The geodesics of metric connections with vectorial torsion”, Ann. Glob. Anal. Geom., 26 (2004), 321–332
[6] Barua B., Ray A. Kr., “Some properties of a semi-symmetric metric connection in a Riemannian manifold”, Indian J. Pure Appl. Math., 16:7 (1985), 736–740
[7] Calvaruso G., “Homogeneous structures on three-dimensional Lorentzian manifolds”, J. Geom. Phys., 57, 1279–1291
[8] Cartan E., “Sur les variétés àconnexion affine et la théorie de la relativitégénéralisée (deuxième partie)”, Ann. Ec. Norm. Sup., 42 (1925), 17–88
[9] Cerbo L. F., “Generic properties of homogeneous Ricci solitons”, Adv. Geom., 14:2 (2014), 225–237
[10] Cordero L. A., Parker P. E., “Left-invariant Lorentzian metrics on 3-dimensional Lie groups”, Rend. Mat., 17 (1997), 129–155
[11] De U. C., De B. K., “Some properties of a semi-symmetric metric connection on a Riemannian manifold”, Istanbul Univ. Fen. Fak. Mat. Der., 54 (1995), 111–117
[12] Muniraja G., “Manifolds admitting a semi-symmetric metric connection and a generalization of Schur's theorem”, Int. J. Contemp. Math. Sci., 3:25 (2008), 1223–1232
[13] Murathan C., Özgür C., “Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions”, Proc. Estonian Acad. Sci., 57:4 (2008), 210–216.
[14] Yano K., “On semi-symmetric metric connection”, Rev. Roum. Math. Pure Appl., 15 (1970), 1579–1586
[15] Yilmaz H. B., Zengin F. Ö., Uysal S. A., “On a semi-symmetric metric connection with a special condition on a Riemannian manifold”, Eur. J. Pure Appl. Math., 4:2 (2011), 152–161
[16] Zengin F. Ö., Demirbağ S. A., Uysal. S. A., Yilmaz H. B., “Some vector fields on a riemannian manifold with semi-symmetric metric connection”, Bull. Iran. Math. Soc., 38:2 (2012), 479–490