Invariant Ricci solitons on metric Lie groups with a semisymmetric connection
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 3, Tome 222 (2023), pp. 19-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine invariant Ricci solitons on three-dimensional unimodular Lie groups with a semisymmetric connection. We prove that nontrivial invariant Ricci solitons exist on some three-dimensional Lie groups with a left-invariant (pseudo) Riemannian metric and a semisymmetric connection different from the Levi-Civita connection. A complete classification of nontrivial invariant Ricci solitons and the corresponding semisymmetric connections on three-dimensional Lie groups is obtained.
Mots-clés : invariant Ricci soliton, Lie group
Keywords: left-invariant (pseudo) Riemannian metric, semisymmetric connection.
@article{INTO_2023_222_a2,
     author = {P. N. Klepikov and E. D. Rodionov and O. P. Khromova},
     title = {Invariant {Ricci} solitons on metric {Lie} groups with a semisymmetric connection},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {19--29},
     publisher = {mathdoc},
     volume = {222},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_222_a2/}
}
TY  - JOUR
AU  - P. N. Klepikov
AU  - E. D. Rodionov
AU  - O. P. Khromova
TI  - Invariant Ricci solitons on metric Lie groups with a semisymmetric connection
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 19
EP  - 29
VL  - 222
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_222_a2/
LA  - ru
ID  - INTO_2023_222_a2
ER  - 
%0 Journal Article
%A P. N. Klepikov
%A E. D. Rodionov
%A O. P. Khromova
%T Invariant Ricci solitons on metric Lie groups with a semisymmetric connection
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 19-29
%V 222
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_222_a2/
%G ru
%F INTO_2023_222_a2
P. N. Klepikov; E. D. Rodionov; O. P. Khromova. Invariant Ricci solitons on metric Lie groups with a semisymmetric connection. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 3, Tome 222 (2023), pp. 19-29. http://geodesic.mathdoc.fr/item/INTO_2023_222_a2/

[1] Klepikov P. N., Oskorbin D. N., “Odnorodnye invariantnye solitony Richchi na chetyrekhmernykh gruppakh Li”, Izv. Alt. gos. un-ta., 85:1/2 (2015), 115–122

[2] Klepikov P. N., Rodionov E. D., Khromova O. P., “Ob invariantnykh solitonakh Richchi na trekhmernykh metricheskikh gruppakh Li s polusimmetricheskoi svyaznostyu”, Izv. vuzov. Mat., 2021, no. 8, 80–85

[3] Rodionov E. D., Slavskii V. V., Chibrikova L. N., “Lokalno konformno odnorodnye psevdorimanovy prostranstva”, Mat. tr., 9:1 (2006), 130–168

[4] Agricola I., Kraus M., “Manifolds with vectorial torsion”, Differ. Geom. Appl., 46 (2016), 130–147

[5] Agricola I., Thier C., “The geodesics of metric connections with vectorial torsion”, Ann. Glob. Anal. Geom., 26 (2004), 321–332

[6] Barua B., Ray A. Kr., “Some properties of a semi-symmetric metric connection in a Riemannian manifold”, Indian J. Pure Appl. Math., 16:7 (1985), 736–740

[7] Calvaruso G., “Homogeneous structures on three-dimensional Lorentzian manifolds”, J. Geom. Phys., 57, 1279–1291

[8] Cartan E., “Sur les variétés àconnexion affine et la théorie de la relativitégénéralisée (deuxième partie)”, Ann. Ec. Norm. Sup., 42 (1925), 17–88

[9] Cerbo L. F., “Generic properties of homogeneous Ricci solitons”, Adv. Geom., 14:2 (2014), 225–237

[10] Cordero L. A., Parker P. E., “Left-invariant Lorentzian metrics on 3-dimensional Lie groups”, Rend. Mat., 17 (1997), 129–155

[11] De U. C., De B. K., “Some properties of a semi-symmetric metric connection on a Riemannian manifold”, Istanbul Univ. Fen. Fak. Mat. Der., 54 (1995), 111–117

[12] Muniraja G., “Manifolds admitting a semi-symmetric metric connection and a generalization of Schur's theorem”, Int. J. Contemp. Math. Sci., 3:25 (2008), 1223–1232

[13] Murathan C., Özgür C., “Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions”, Proc. Estonian Acad. Sci., 57:4 (2008), 210–216.

[14] Yano K., “On semi-symmetric metric connection”, Rev. Roum. Math. Pure Appl., 15 (1970), 1579–1586

[15] Yilmaz H. B., Zengin F. Ö., Uysal S. A., “On a semi-symmetric metric connection with a special condition on a Riemannian manifold”, Eur. J. Pure Appl. Math., 4:2 (2011), 152–161

[16] Zengin F. Ö., Demirbağ S. A., Uysal. S. A., Yilmaz H. B., “Some vector fields on a riemannian manifold with semi-symmetric metric connection”, Bull. Iran. Math. Soc., 38:2 (2012), 479–490