Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_221_a5, author = {E. Deza}, title = {Spanning forests and special numbers}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {51--62}, publisher = {mathdoc}, volume = {221}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a5/} }
E. Deza. Spanning forests and special numbers. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 51-62. http://geodesic.mathdoc.fr/item/INTO_2023_221_a5/
[1] Vorobev N. N., Chisla Fibonachchi, Nauka, M., 1978
[2] Deza E. I., Mkhanna B., “O spetsialnykh svoistvakh nekotorykh kvazimetrik”, Chebyshev. sb., 21:1 (2020), 145–164
[3] Deza E. I., Mkhanna B., “Voprosy perechisleniya ostovnykh lesov nekotorykh grafov”, Chebyshev. sb., 22:3 (2021), 77–99
[4] Chebotarev P., A graph theoretic interpretation of the mean first passage times, arXiv: math/0701359 [math.PR]
[5] Chebotarev P., “Spanning forest and the Golden ratio”, Discr. Appl. Math., 156 (2008), 813–821
[6] Chebotarev P., Agaev R., “Forest matrices around the Laplacian matrix”, Lin. Alg. Appl., 356 (2002), 253–274
[7] Chebotarev P., Deza E., “Hitting time quasi-metric and its forest representation”, Optim. Lett., 14 (2020), 291–307
[8] Chebotarev P. Yu., Shamis E. V., “On proximity measures for graph vertices”, Automat. Remote Control., 59 (1998), 1443–1459
[9] Deza M., Deza E., Vidali J., “Cones of weighted and partial metrics”, Proc. Int. Conf. on Algebra, 2010, World Scientific, Hackensack, New Jersey, 2012, 177–197
[10] Kirkland S. J., Neumann M., Group Inverses of M-Matrices and Their Applications, CRC Press, 2012
[11] Leighton T., Rivest R. L., The Markov chain tree theorem. Computer Science Technical Report MIT/LCS/TM-249, Laboratory of Computer Science, MIT, Cambridge, Massachusetts, 1983
[12] Meyer C. D., Jr., “The role of the group generalized inverse in the theory of finite Markov chains”, SIAM Rev., 17 (1975), 443–464