Electrodynamics in complex space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 42-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the complex space-time realized in the biquaternion algebra and the Maxwell and Lorentz equations in this formalism. Also, we prove a theorem on the identity of magnetic monopoles and tachyons carrying an electric charge.
Keywords: complex space-time, regularity conditions, Maxwell equations, generalized Stokes theorem.
Mots-clés : biquaternions
@article{INTO_2023_221_a4,
     author = {M. P. Burlakov and N. I. Guseva},
     title = {Electrodynamics in complex space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {42--50},
     publisher = {mathdoc},
     volume = {221},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a4/}
}
TY  - JOUR
AU  - M. P. Burlakov
AU  - N. I. Guseva
TI  - Electrodynamics in complex space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 42
EP  - 50
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_221_a4/
LA  - ru
ID  - INTO_2023_221_a4
ER  - 
%0 Journal Article
%A M. P. Burlakov
%A N. I. Guseva
%T Electrodynamics in complex space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 42-50
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_221_a4/
%G ru
%F INTO_2023_221_a4
M. P. Burlakov; N. I. Guseva. Electrodynamics in complex space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 42-50. http://geodesic.mathdoc.fr/item/INTO_2023_221_a4/

[3] Burlakov I. M., Burlakov M. P., Vvedenie v giperkompleksnyi analiz, LAMBERT, 2017

[4] Burlakov I. M., Burlakov M. P., Geometricheskie struktury lineinykh algebr, LAMBERT, 2017

[5] Gerts G. R., Printsipy mekhaniki, izlozhennye v novoi svyazi, Izd-vo AN SSSR, M., 1959

[6] Minkovskii G., “Prostranstvo i vremya”, Usp. fiz. nauk., 69 (1959), 303–320

[7] Penrouz R., Rindler V., Spinory i prostranstvo-vremya, Mir, M, 1987

[8] Primenko L. A., “Matematicheskie idei O. Khevisaida”, Iz istorii razvitiya fiziko-matematicheskikh nauk, Kiev, 1981, 37–44

[9] Rekami E., “Teoriya otnositelnosti i ee obobscheniya”, Astrofizika, kvanty i teoriya otnositelnosti, Mir, M., 1982, 53–128

[10] Rozenfeld B. A., Neevklidovy geometrii, GITTL, M, 1955

[11] Khund F., Istoriya kvantovoi teorii, Naukova dumka, Kiev, 1980

[12] Dirac P. A. M., “Quantised singularities in the electromagnetic field”, Proc. Roy. Soc. Ser. A., 133:821 (1931), 60–72