Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_221_a3, author = {I. V. Bubyakin}, title = {On the differential geometry of complexes of two-dimensional planes of the projective space $P^n$ containing a finite number of torsos and characterized by the configuration of their characteristic lines}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {31--41}, publisher = {mathdoc}, volume = {221}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a3/} }
TY - JOUR AU - I. V. Bubyakin TI - On the differential geometry of complexes of two-dimensional planes of the projective space $P^n$ containing a finite number of torsos and characterized by the configuration of their characteristic lines JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 31 EP - 41 VL - 221 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_221_a3/ LA - ru ID - INTO_2023_221_a3 ER -
%0 Journal Article %A I. V. Bubyakin %T On the differential geometry of complexes of two-dimensional planes of the projective space $P^n$ containing a finite number of torsos and characterized by the configuration of their characteristic lines %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 31-41 %V 221 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_221_a3/ %G ru %F INTO_2023_221_a3
I. V. Bubyakin. On the differential geometry of complexes of two-dimensional planes of the projective space $P^n$ containing a finite number of torsos and characterized by the configuration of their characteristic lines. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 31-41. http://geodesic.mathdoc.fr/item/INTO_2023_221_a3/