Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_221_a3, author = {I. V. Bubyakin}, title = {On the differential geometry of complexes of two-dimensional planes of the projective space $P^n$ containing a finite number of torsos and characterized by the configuration of their characteristic lines}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {31--41}, publisher = {mathdoc}, volume = {221}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a3/} }
TY - JOUR AU - I. V. Bubyakin TI - On the differential geometry of complexes of two-dimensional planes of the projective space $P^n$ containing a finite number of torsos and characterized by the configuration of their characteristic lines JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 31 EP - 41 VL - 221 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_221_a3/ LA - ru ID - INTO_2023_221_a3 ER -
%0 Journal Article %A I. V. Bubyakin %T On the differential geometry of complexes of two-dimensional planes of the projective space $P^n$ containing a finite number of torsos and characterized by the configuration of their characteristic lines %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 31-41 %V 221 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_221_a3/ %G ru %F INTO_2023_221_a3
I. V. Bubyakin. On the differential geometry of complexes of two-dimensional planes of the projective space $P^n$ containing a finite number of torsos and characterized by the configuration of their characteristic lines. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 31-41. http://geodesic.mathdoc.fr/item/INTO_2023_221_a3/
[1] Akivis M. A., “Tkani i pochti grassmanovy struktury”, Sib. mat. zh., 23:6 (1982), 6–15
[2] Akivis M. A., Goldberg V. V., “Mnogoobraziya s vyrozhdennym gaussovym otobrazheniem s kratnymi fokusami i skruchennye konusy”, Izv. vuzov. Mat., 2003, no. 11, 3–14
[3] Arnold V. I., “Kompleksnyi lagranzhev grassmanian”, Funkts. anal. prilozh., 34:3 (2000), 63–65
[4] Arnold V. I., “Lagranzhev grassmanian kvaternionnogo gipersimplekticheskogo prostranstva”, Funkts. anal. prilozh., 35:1 (2001), 74–77
[5] Bubyakin I. V., Geometriya pyatimernykh kompleksov dvumernykh ploskostei, Nauka, Novosibirsk, 2001
[6] Bubyakin I. V., “O stroenii pyatimernykh kompleksov dvumernykh ploskostei proektivnogo prostranstva $P^{5}$ c edinstvennym torsom”, Mat. zametki SVFU., 24:2 (2017), 3–12
[7] Bubyakin I. V., “O stroenii kompleksov $m$-mernykh ploskostei proektivnogo prostranstva, soderzhaschikh konechnoe chislo torsov”, Mat. zametki SVFU., 24:4 (2017), 3–16
[8] Bubyakin I. V., “O stroenii nekotorykh kompleksov $m$-mernykh ploskostei proektivnogo prostranstva, soderzhaschikh konechnoe chislo torsov, I”, Mat. zametki SVFU., 26:2 (2019), 1–14
[9] Bubyakin I. V., “O stroenii nekotorykh kompleksov $m$-mernykh ploskostei proektivnogo prostranstva, soderzhaschikh konechnoe chislo torsov, II”, Mat. zametki SVFU., 26:4 (2019), 14–24
[10] Gelfand I. M., Gindikin S. G., Graev M. I., Izbrannye zadachi integralnoi geometrii, Dobrosvet, M., 2007
[11] Makokha A. N., “Geometricheskaya konstruktsiya lineinogo kompleksa ploskostei $B_{3}$”, Izv. vuzov. Mat., 2018, no. 11, 15–26
[12] Nersesyan V. A., “Dopustimye kompleksy trekhmernykh ploskostei proektivnogo prostranstva $P^{6}$, II”, Uch. zap. Erevan. un-ta. Ser. fiz. mat., 2002, no. 1, 34–38
[13] Nersesyan V. A., “Dopustimye kompleksy trekhmernykh ploskostei proektivnogo prostranstva $P^{6}$, II”, Uch. zap. Erevan. un-ta. Ser. fiz. mat., 2001, no. 3, 35–39
[14] Stegantseva P. G., Grechneva M. A., “Grassmanov obraz neizotropnoi poverkhnosti psevdoevklidova prostranstva”, Izv. vuzov. Mat., 2017, no. 2, 65–75
[15] Akivis M. A., “On the differential geometry of a Grassmann manifold”, Tensor., 38 (1982), 273–282
[16] Akivis M. A., Goldberg V. V., Projective Differential Geometry of Submanifolds, North-Holland, 1993
[17] Akivis M. A., Goldberg V. V., Differential Geometry of Varieties with Degenerate Gauss Map, Springer-Verlag, New York, 2004
[18] Akivis M. A., Goldberg V. V., Conformal Differetial Geometry and Its Generalizations, Wiley, New York, 2011
[19] Arkani-Hamed N., Bourjaily J. L., Cachazo F., Goncharov A. B., Postnikov A., Trnka J., Scattering amplitudes and the positive Grassmannian, arXiv: 1212.5605 [hep-th]
[20] Arkani-Hamed N., Trnka J., “The Amplituhedron”, J. High Energy Phys., 10 (2014), 1–33
[21] Bubyakin I. V., “To geometry of complexes of $m$-dimensional planes in projective space $P^{n}$ containing a finite number of developable surfaces”, Mat. Mezhdunar. konf., posv. 100-letiyu V. T. Bazyleva (Moskva, 22-25 aprelya 2019 g.), MGPU, M., 2019, 17–18
[22] Hassett B., Introduction to Algebraic Geometry, Cambridge Univ. Press, Cambridge, 2007
[23] Landsberg J. M., Algebraic Geometry and Projective Differential Geometry, Seoul Natl. Univ., Seoul, 1997
[24] Room T. G., The Geometry of Determinantal Loci, Cambridge Univ. Press, Cambridge, 1938