Spontaneous clustering in Markov chains. II.~Mesofractal model
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 128-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the second part of the review, we apply theoretical principles developed in the first part to analysing statistical characteristics of clustering the observed distribution of galaxies in the visible part of the Universe. In contrast to the standard approach to solving the dynamic problem of clustering gravitational plasma based on systems of differential equations that describe the plasma as a continuous medium, we use the Ornstein–Zernike integral equation for a system of randomly distributed points whose interaction is described by an appropriate choice of the kernel of the Ornstein–Zernike equation for the two-particle correlation function. Within the framework of this “mesofractal” model, we find a $4$-parameter representation of the spectrum of fluctuation power, which allows one to determine statistical parameters of the medium from the observed data. The first part of this work: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 220. — P. 125–144.
Mots-clés : gravitation plasma, galaxies
Keywords: Ornstein–Zernike equation, mesofractal model, correlations, power spectrum.
@article{INTO_2023_221_a11,
     author = {V. V. Uchaikin},
     title = {Spontaneous clustering in {Markov} chains. {II.~Mesofractal} model},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {128--147},
     publisher = {mathdoc},
     volume = {221},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a11/}
}
TY  - JOUR
AU  - V. V. Uchaikin
TI  - Spontaneous clustering in Markov chains. II.~Mesofractal model
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 128
EP  - 147
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_221_a11/
LA  - ru
ID  - INTO_2023_221_a11
ER  - 
%0 Journal Article
%A V. V. Uchaikin
%T Spontaneous clustering in Markov chains. II.~Mesofractal model
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 128-147
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_221_a11/
%G ru
%F INTO_2023_221_a11
V. V. Uchaikin. Spontaneous clustering in Markov chains. II.~Mesofractal model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 128-147. http://geodesic.mathdoc.fr/item/INTO_2023_221_a11/

[1] Veinberg S., Gravitatsiya i kosmologiya, Mir, M., 1975

[2] Kolchuzhkin A. I., Uchaikin V. V., Vvedenie v teoriyu prokhozhdeniya chastits cherez veschestvo, Atomizdat, M., 1978

[3] Uchaikin V. V., “Spontannaya klasterizatsiya v markovskikh tsepyakh I. Fraktalnaya pyl”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 220 (2023), 125–144

[4] Uchaikin V. V., Korobko D. A., Gismyatov I. F., “Modifitsirovannyi algoritm Mandelbrota stokhasticheskogo modelirovaniya raspredeleniya galaktik fraktalnogo tipa”, Izv. vuzov. Fiz., 8 (1997), 7–13

[5] Altenberger A. R., Dahler J. S., “On the galactic pair correlation function for a gravitational plasma”, Astrophys. J., 421 (1994), L9–L12

[6] Balian R., Schaeffer R., “Scale-invariant matter distribution in the Universe”, Astron. Astrophys., 226 (1989), 373–414

[7] Baryshev Y. V., Labini F., Montuori M., Pietronero L., “Facts and ideas in modern cosmology”, Vistas Astron., 38 (1994), 419–500

[8] Borgani S., “Scaling in the Universe”, Phys. Rep., 251 (1995), 1–152

[9] Cole S., Percival W. J., et al., “The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications”, Month. Not. Roy. Astron. Soc., 362 (2005), 505–534

[10] Coleman P. H., Pietronero L., “Fractal structure of the Universe”, Phys. Rep., 213 (1992), 311–389

[11] Coles P., Moscardini L., Plionis M. et al., “Topology in 2D. IV. CDM Models with Non-Gaussian Initial conditions”, Month. Not. Roy. Astron. Soc., 260 (1993), 572

[12] Davis M., Meiksin A., Strauss M. et al., “On the universality of the two-point galaxy correlation function”, Astron. J., 333 (1988), L9–L12

[13] Einasto J., Klypin A. A., Saar E., “Structure ofsuperclusters and supercluster formation. V. Spatial correlation and voids”, Month. Not. Roy. Astron. Soc., 219 (1986), 457–478

[14] Fry J. N., “Gravity, bias, and the Galaxy three-point correlation function”, Phys. Rev. Lett., 73:2 (1994), 215–219

[15] Jones B. J., Martinez V. J., Saar E., Trimble V., “Scaling laws in the distribution of galaxies”, Rev. Mod. Phys., 76 (2005), 1211–1266

[16] Gaite J., “Halos and voids in a multifractal model of cosmic structure”, Astrophys. J., 658 (2007), 11–24

[17] Geller M., “The large-scale distribution of galaxies”, Astronomy, Cosmology and Fundamental Physics, eds. Caffo M., Fanti R., Giacomelli G., Renzini A., Springer, Dordrecht, 1989, 83–103

[18] Grassberger P., Procaccia I., “Estimation of the Kolmogorov entropy from a chaotic signal”, Phys. Rev. A., 28:4 (1983), 2591–2593

[19] Guth A., “Inflationary universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D., 23 (1981), 347–356

[20] Linde A., “The inflationary Universe”, Rep. Prog. Phys., 47 (1984), 925–986

[21] Mandelbrot B. B., “Fonctions aléatoires pluri-temporelles: approximation poissonienne du cas brownien et généralisations”, C. R. Acad. Sci. Paris. Sér. A., 280 (1975), 1075–1078

[22] Mandelbrot B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983

[23] Martinez V. J., Jones B. J. T., Dominguez-Tenreir R., “Clustering paradigms and multifractal measures”, Astrophys. J., 357 (1990), 50–61

[24] Mezzetti M. et al., Large Scale Structure and Motions in the Universe, Springer, Dordrecht, 1989

[25] Pietronero L., “The fractal structure of the universe: Correlations of galaxies and clusters and the average mass density”, Physica A., 144:2-3 (1987), 257–284

[26] Pietronero L., Montuori M., Sylos Labini F., On the fractal structure of the visible universe, arXiv: astro-ph/9611197

[27] Peebles P. J. E., The Large-Scale Structure of the Universe, Princeton Univ. Press, Princeton, New Jersey, 1980

[28] Percival W. J. et al., “The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe”, Month. Not. Roy. Astron. Soc., 327:4 (2001), 1297–1306

[29] Percival W. J. et al., “The 2dF Galaxy Redshift Survey: Spherical harmonics analysis of fluctuations in the final catalogue”, Month. Not. Roy. Astron. Soc., 353:4 (2004), 1201–1220

[30] Ribeiro M. B., Miguelote A. Y., “Fractals and the distribution of galaxies”, Brazil. J. Phys., 28:2 (1998), 132-160

[31] Saunders W. et al., “The density field of the local Universe”, Nature., 349 (1991), 32–38

[32] Takayasu H., “Stable distribution and Lévy process in fractal turbulence”, Progr. Theor. Phys., 72 (1984), 471–478

[33] Uchaikin V. V., “The mesofractal universe driven by Rayleigh–Levy walk”, Gen. Relat. Grav., 36:7 (2004), 1689–1718

[34] Uchaikin V., Gismjatov I., Gusarov G., Svetukhin V., “Paired Lévy–Mandelbrot trajectory as a homogeneous fractal”, Int. J. Bifurcation Chaos., 8:5 (1998), 977–984

[35] Uchaikin V. V., Gusarov G. G., “Levy flight applied to random media problems”, J. Math. Phys., 38 (1997), 2453–2464

[36] Uchaikin V. V., Litvinov V. A., Kozhemyakina E. V., Kozhemyakin I. I., “A random walk model for spatial galaxy distribution”, Mathematics., 9:1 (2021), 1–17

[37] Uchaikin V. V., Zolotarev V. M., Chance and stability. Stable distributions and their applications, VSP, Utrecht, The Netherlands, 1999