On the existence of a positive solution to a boundary-value problem for a nonlinear second-order functional differential equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a boundary-value problem for a second-order nonlinear functional-differential equation with a strong nonlinearity on the interval $[0,1]$ with integral boundary conditions. Using special topological tools, we obtain sufficient conditions for the existence of a unique positive solution of the problem. The existence of a positive solution is proved by applying the well-known cone dilation theorem, and the uniqueness is established by using the uniqueness principle for convex operators. An example is given, which illustrates the fulfillment of sufficient conditions for the unique solvability of the problem.
Mots-clés : positive solution
Keywords: boundary value problem, cone, cone extension.
@article{INTO_2023_221_a0,
     author = {G. \`E. Abduragimov},
     title = {On the existence of a positive solution to a boundary-value problem for a nonlinear second-order functional differential equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {221},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a0/}
}
TY  - JOUR
AU  - G. È. Abduragimov
TI  - On the existence of a positive solution to a boundary-value problem for a nonlinear second-order functional differential equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 3
EP  - 9
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_221_a0/
LA  - ru
ID  - INTO_2023_221_a0
ER  - 
%0 Journal Article
%A G. È. Abduragimov
%T On the existence of a positive solution to a boundary-value problem for a nonlinear second-order functional differential equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 3-9
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_221_a0/
%G ru
%F INTO_2023_221_a0
G. È. Abduragimov. On the existence of a positive solution to a boundary-value problem for a nonlinear second-order functional differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2023_221_a0/

[1] Abduragimov G. E., “O suschestvovanii polozhitelnogo resheniya kraevoi zadachi dlya odnogo nelineinogo obyknovennogo differentsialnogo uravneniya vtorogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 199 (2021), 3–6

[2] Abduragimov G. E., “O suschestvovanii polozhitelnogo resheniya kraevoi zadachi dlya odnogo nelineinogo differentsialnogo uravneniya vtorogo poryadka s integralnymi granichnymi usloviyami”, Mat. fiz. kompyut. model., 25:4 (2022), 5–14

[3] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962

[4] Krasnoselskii M. A., Pokornyi Yu. V., “Nenulevye resheniya uravnenii s silnymi nelineinostyami”, Mat. zametki., 5:2 (1969), 253–260

[5] Ahmad B., Nieto J. ,J., “Existence results for nonlinear boundary-value problems of fractional integrodifferential equations with integral boundary conditions”, Boundary-Value Probl., 2009 (2009), 1–11

[6] Belarbi A., Benchohra M., “Existence results for nonlinear boundary-value problems with integral boundary conditions”, Electron. J. Differ. Equations., 2005:6 (2005), 1–10

[7] Belarbi A., Benchohra M., Quahab A., “Multiple positive solutions for nonlinear boundary-value problems with integral boundary conditions”, Arch. Math., 44:1 (2008), 1–7

[8] Benchohra M., Hamani S., Nieto J. J., “The method of upper and lower solution for second order differential inclusions with integral boundary conditions”, Rocky Mount. J. Math., 40:1 (2010), 13–26

[9] Cabada A., Iglesias J., “Nonlinear differential equations with perturbed Dirichlet integral boundary conditions”, Boundary-Value Probl., 66 (2021), 1–19

[10] Infante G., “Nonlocal boundary-value problems with two nonlinear boundary conditions”, Commun. Appl. Anal., 12:3 (2008), 279–288

[11] Webb J. R. L., “A unified approach to nonlocal boundary value problems”, Dynam. Syst. Appl., 5 (2008), 510–515

[12] Webb J. R. L., “Positive solutions of some higher order nonlocal boundary-value problems”, Electron. J. Qualit. Theory Differ. Equations., 29 (2009), 1–15

[13] Webb J. R. L., Infante G., “Positive solutions of nonlocal boundary-value problems a unified approach”, J. London Math. Soc., 74:3 (2006), 673–693