Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_221_a0, author = {G. \`E. Abduragimov}, title = {On the existence of a positive solution to a boundary-value problem for a nonlinear second-order functional differential equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--9}, publisher = {mathdoc}, volume = {221}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_221_a0/} }
TY - JOUR AU - G. È. Abduragimov TI - On the existence of a positive solution to a boundary-value problem for a nonlinear second-order functional differential equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 3 EP - 9 VL - 221 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_221_a0/ LA - ru ID - INTO_2023_221_a0 ER -
%0 Journal Article %A G. È. Abduragimov %T On the existence of a positive solution to a boundary-value problem for a nonlinear second-order functional differential equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 3-9 %V 221 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_221_a0/ %G ru %F INTO_2023_221_a0
G. È. Abduragimov. On the existence of a positive solution to a boundary-value problem for a nonlinear second-order functional differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 2, Tome 221 (2023), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2023_221_a0/
[1] Abduragimov G. E., “O suschestvovanii polozhitelnogo resheniya kraevoi zadachi dlya odnogo nelineinogo obyknovennogo differentsialnogo uravneniya vtorogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 199 (2021), 3–6
[2] Abduragimov G. E., “O suschestvovanii polozhitelnogo resheniya kraevoi zadachi dlya odnogo nelineinogo differentsialnogo uravneniya vtorogo poryadka s integralnymi granichnymi usloviyami”, Mat. fiz. kompyut. model., 25:4 (2022), 5–14
[3] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962
[4] Krasnoselskii M. A., Pokornyi Yu. V., “Nenulevye resheniya uravnenii s silnymi nelineinostyami”, Mat. zametki., 5:2 (1969), 253–260
[5] Ahmad B., Nieto J. ,J., “Existence results for nonlinear boundary-value problems of fractional integrodifferential equations with integral boundary conditions”, Boundary-Value Probl., 2009 (2009), 1–11
[6] Belarbi A., Benchohra M., “Existence results for nonlinear boundary-value problems with integral boundary conditions”, Electron. J. Differ. Equations., 2005:6 (2005), 1–10
[7] Belarbi A., Benchohra M., Quahab A., “Multiple positive solutions for nonlinear boundary-value problems with integral boundary conditions”, Arch. Math., 44:1 (2008), 1–7
[8] Benchohra M., Hamani S., Nieto J. J., “The method of upper and lower solution for second order differential inclusions with integral boundary conditions”, Rocky Mount. J. Math., 40:1 (2010), 13–26
[9] Cabada A., Iglesias J., “Nonlinear differential equations with perturbed Dirichlet integral boundary conditions”, Boundary-Value Probl., 66 (2021), 1–19
[10] Infante G., “Nonlocal boundary-value problems with two nonlinear boundary conditions”, Commun. Appl. Anal., 12:3 (2008), 279–288
[11] Webb J. R. L., “A unified approach to nonlocal boundary value problems”, Dynam. Syst. Appl., 5 (2008), 510–515
[12] Webb J. R. L., “Positive solutions of some higher order nonlocal boundary-value problems”, Electron. J. Qualit. Theory Differ. Equations., 29 (2009), 1–15
[13] Webb J. R. L., Infante G., “Positive solutions of nonlocal boundary-value problems a unified approach”, J. London Math. Soc., 74:3 (2006), 673–693