Features of the problem on synchronization of two van der Pol--Duffing oscillators in the case of a direct connection and the presence of symmetry
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 1, Tome 220 (2023), pp. 49-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two coupled van der Pol–Duffing oscillators are considered in the case of direct symmetric coupling. We show that synchronization of oscillations (i.e., the presence of stable limit cycles) is typical for self-oscillating systems. Asymptotic formulas for the corresponding solutions are obtained. It is found that the behavior of solutions is not affected by the presence or absence of resonances of eigenfrequencies in the linearized problem.
Keywords: van der Pol–Duffing oscillator, feedforward, synchronization, normal form, resonance of eigenfrequencies, stability, self-oscillations.
@article{INTO_2023_220_a6,
     author = {D. A. Kulikov},
     title = {Features of the problem on synchronization of two van der {Pol--Duffing} oscillators in the case of a direct connection and the presence of symmetry},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {220},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_220_a6/}
}
TY  - JOUR
AU  - D. A. Kulikov
TI  - Features of the problem on synchronization of two van der Pol--Duffing oscillators in the case of a direct connection and the presence of symmetry
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 49
EP  - 60
VL  - 220
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_220_a6/
LA  - ru
ID  - INTO_2023_220_a6
ER  - 
%0 Journal Article
%A D. A. Kulikov
%T Features of the problem on synchronization of two van der Pol--Duffing oscillators in the case of a direct connection and the presence of symmetry
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 49-60
%V 220
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_220_a6/
%G ru
%F INTO_2023_220_a6
D. A. Kulikov. Features of the problem on synchronization of two van der Pol--Duffing oscillators in the case of a direct connection and the presence of symmetry. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 1, Tome 220 (2023), pp. 49-60. http://geodesic.mathdoc.fr/item/INTO_2023_220_a6/

[10] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh diffrentsialnykh uravnenii, Nauka, M., 1978

[11] Blaker O., Analiz nelineinykh sistem, Mir, M., 1969

[12] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issled., M.-Izhevsk, 2002

[13] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967

[14] Kuznetsov A. P., Paksyutov V. I., “O dinamike dvukh svyazannykh ostsillyatorov Van der Polya—Duffinga s dissipativnoi svyazyu”, Izv. vuzov. Prikl. nelin. dinamika., 2003 *v 11, no. 6, 48–63

[15] Kulikov A. N., “Bifurkatsiya malykh periodicheskikh reshenii v sluchae, blizkom k rezonansu 1:2 dlya odnogo klassa nelineinykh evolyutsionnykh uravnenii”, Dinam. sist., 2 (30):3-4 (2012), 241–258

[16] Kulikov A. N., Kulikov D. A., “Lokalnye bifurkatsii v uravneniyakh Kana—Khilliarda, Kuramoto—Sivashinskogo i ikh obobscheniyakh”, Zh. vychisl. mat. mat. fiz., 59:4 (2019), 670–683

[17] Kulikov D. A., “Avtomodelnye periodicheskie resheniya i bifurkatsii ot nikh v zadache o vzaimodeistvii dvukh slabosvyazannykh ostsillyatorov”, Izv. vuzov. Prikl. nelin. dinamika., 14:5 (2006), 120–132

[18] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, GITTL, M., 1956

[19] Pikovskii A., Rozenblyum M., Kurtts Yu., Sinkhronizatsiya. Fundamentalnoe yavlenie, Tekhnosfera, M., 2003

[20] Aranson D. G., Ermentrout G. B., Kopell N., “Amplitude response of coupled oscillations”, Phys. D., 41:3 (1990), 403–449

[21] Broer H. W., Dumortier F., van Strien S. J., Takens F., Structures in Dynamics: Dimensional Deterministic Studies, North-Holland, Amsterdam, 1991

[22] Kulikov D. A., “Self-similar cycles and their local bifurcations in the problem of two weakly coupled oscillators”, J. Appl. Math. Mech., 74:4 (2010), 389–400

[23] Radin M. A., Kulikov A. N., Kulikov D. A., “Synchronization of fluctuations in the interaction of economies within the framework of the Keynes's business cycle model”, Nonlin. Dynam. Psychol. Life Sci., 25:1 (2021), 93–111