Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_220_a6, author = {D. A. Kulikov}, title = {Features of the problem on synchronization of two van der {Pol--Duffing} oscillators in the case of a direct connection and the presence of symmetry}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {49--60}, publisher = {mathdoc}, volume = {220}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_220_a6/} }
TY - JOUR AU - D. A. Kulikov TI - Features of the problem on synchronization of two van der Pol--Duffing oscillators in the case of a direct connection and the presence of symmetry JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 49 EP - 60 VL - 220 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_220_a6/ LA - ru ID - INTO_2023_220_a6 ER -
%0 Journal Article %A D. A. Kulikov %T Features of the problem on synchronization of two van der Pol--Duffing oscillators in the case of a direct connection and the presence of symmetry %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 49-60 %V 220 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_220_a6/ %G ru %F INTO_2023_220_a6
D. A. Kulikov. Features of the problem on synchronization of two van der Pol--Duffing oscillators in the case of a direct connection and the presence of symmetry. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 1, Tome 220 (2023), pp. 49-60. http://geodesic.mathdoc.fr/item/INTO_2023_220_a6/
[10] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh diffrentsialnykh uravnenii, Nauka, M., 1978
[11] Blaker O., Analiz nelineinykh sistem, Mir, M., 1969
[12] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issled., M.-Izhevsk, 2002
[13] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967
[14] Kuznetsov A. P., Paksyutov V. I., “O dinamike dvukh svyazannykh ostsillyatorov Van der Polya—Duffinga s dissipativnoi svyazyu”, Izv. vuzov. Prikl. nelin. dinamika., 2003 *v 11, no. 6, 48–63
[15] Kulikov A. N., “Bifurkatsiya malykh periodicheskikh reshenii v sluchae, blizkom k rezonansu 1:2 dlya odnogo klassa nelineinykh evolyutsionnykh uravnenii”, Dinam. sist., 2 (30):3-4 (2012), 241–258
[16] Kulikov A. N., Kulikov D. A., “Lokalnye bifurkatsii v uravneniyakh Kana—Khilliarda, Kuramoto—Sivashinskogo i ikh obobscheniyakh”, Zh. vychisl. mat. mat. fiz., 59:4 (2019), 670–683
[17] Kulikov D. A., “Avtomodelnye periodicheskie resheniya i bifurkatsii ot nikh v zadache o vzaimodeistvii dvukh slabosvyazannykh ostsillyatorov”, Izv. vuzov. Prikl. nelin. dinamika., 14:5 (2006), 120–132
[18] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, GITTL, M., 1956
[19] Pikovskii A., Rozenblyum M., Kurtts Yu., Sinkhronizatsiya. Fundamentalnoe yavlenie, Tekhnosfera, M., 2003
[20] Aranson D. G., Ermentrout G. B., Kopell N., “Amplitude response of coupled oscillations”, Phys. D., 41:3 (1990), 403–449
[21] Broer H. W., Dumortier F., van Strien S. J., Takens F., Structures in Dynamics: Dimensional Deterministic Studies, North-Holland, Amsterdam, 1991
[22] Kulikov D. A., “Self-similar cycles and their local bifurcations in the problem of two weakly coupled oscillators”, J. Appl. Math. Mech., 74:4 (2010), 389–400
[23] Radin M. A., Kulikov A. N., Kulikov D. A., “Synchronization of fluctuations in the interaction of economies within the framework of the Keynes's business cycle model”, Nonlin. Dynam. Psychol. Life Sci., 25:1 (2021), 93–111