Spontaneous clustering in Markov chains. I. Fractal Dust
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 1, Tome 220 (2023), pp. 125-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

The review is devoted to the description of the statistical properties of a set of isolated points randomly distributed in space, which are nodes of one (or a family of independent) realizations of a Markov chain. The purpose of the analysis of this model is to study the conditions for the emergence of clusters in the set of these nodes and to describe their characteristics. This (first) part of the review introduces the basic concepts of statistics of point distributions: generating functionals, many-particle densities, factorial moments, Markov chains, correlation functions. The part ends with a description of one-dimensional self-similar (in the statistical sense) sets generated by a Poisson-fractional random process and a demonstration of the clustering phenomenon.
Keywords: point sets, generating functionals, multiparticle functions, fractals
Mots-clés : moments, Markov chains, Poisson process.
@article{INTO_2023_220_a12,
     author = {V. V. Uchaikin},
     title = {Spontaneous clustering in {Markov} chains. {I.} {Fractal} {Dust}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {125--144},
     publisher = {mathdoc},
     volume = {220},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_220_a12/}
}
TY  - JOUR
AU  - V. V. Uchaikin
TI  - Spontaneous clustering in Markov chains. I. Fractal Dust
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 125
EP  - 144
VL  - 220
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_220_a12/
LA  - ru
ID  - INTO_2023_220_a12
ER  - 
%0 Journal Article
%A V. V. Uchaikin
%T Spontaneous clustering in Markov chains. I. Fractal Dust
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 125-144
%V 220
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_220_a12/
%G ru
%F INTO_2023_220_a12
V. V. Uchaikin. Spontaneous clustering in Markov chains. I. Fractal Dust. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 1, Tome 220 (2023), pp. 125-144. http://geodesic.mathdoc.fr/item/INTO_2023_220_a12/

[1] Baryshev Yu. V., Teerikorpi P., Fraktalnaya struktura Vselennoi, CAO RAN, Nizhnii Arkhyz, 2005

[2] Keiz K., Tsvaifel P., Lineinaya teoriya perenosa, Mir, M., 1972

[3] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969

[4] Paitgen Kh.-O., Rikhter P. Kh., Krasota fraktalov. Obrazy kompleksnykh dinamicheskikh sistem, Mir, M., 1993

[5] Repin O. N., Saichev A. I., “Drobnyi zakon Puassona”, Izv. vuzov. Radiofizika., 43:9 (2000), 823–826

[6] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971

[7] Petronero L. (red.), Fraktaly v fizike, Mir, M., 1988

[8] Feder E., Fraktaly, Mir, M., 1991

[9] Shreder M., Fraktaly, khaos, stepennye zakony. Miniatyury iz beskonechnogo raya, RKhD, Moskva–Izhevsk, 2001

[10] Balescu R., Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York–London–Sydney–Toronto, 1975

[11] Harris T. E., The Theory of Branching Processe, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963

[12] Isichenko M. B., “Percolation, statistical topography, and transport in random media”, Rev. Mod. Phys., 64 (1992), 961–1043

[13] Jumarie G., “Fraction l master equation: non-standard analysis and Liouville–Riemann derivative”, Chaos, Solitons and Fractals., 12 (2001), 2577–2587

[14] Laskin N., “Fractional Poisson processes”, Commun. Nonlin. Sci. Numer. Simul., 8 (2003), 201–213

[15] Mandelbrot B. B., Fractals: Form, Chance and Dimension, W. H. Freeman, San Francisco, 1977

[16] Mandelbrot B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983

[17] Stell G., “Statistical Mechanics Applied to Random-Media Problems”, AMS Lect. Appl. Math., 27 (1991), 109–137

[18] Takayasu H., “Stable distribution and Lévy process in fractal turbulence”, Progr. Theor. Phys., 72 (1984), 471–478

[19] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers. Vol. 1, Springer-Verlag, Berlin–Heidelberg, 2013

[20] Uchaikin V., Cahoy D., Sibatov R., “Fractional processes: From Poisson to branching one”, Int. J. Bifurcation Chaos., 18:09 (2008), 2717–2725

[21] Uchaikin V. V., Zolotarev V. M., Chance and Stability. Stable Distributions and Their Applications, VSP, Netherlands, Utrecht, 1999

[22] Wang Xiao-Tian, Wen Zhi-Xiong, “Poisson fractional processes”, Chaos, Solitons and Fractals., 18:1 (2003), 169–177

[23] Wang Xiao-Tian, Wen Zhi-Xiong, Zhang Shi-Ying, “Poisson fractional processes, II”, Chaos, Solitons and Fractals., 28:1 (2006), 143–147