Statistical structures on manifolds and their immersions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 1, Tome 220 (2023), pp. 113-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

An important example of structures of information geometry is a statistical structure. This is a Riemannian metric $g$ on a smooth manifold $M$ with a completely symmetric tensor field $K$ of type $(2,1)$. On a manifold endowed with the statistical structure $(g,K)$, a one-parameter family of $\alpha$-connections $\nabla^{\alpha}=D+\alpha\cdot K$ is defined invariantly, where $D$ is the Levi-Civita connection of the metric $g$ and $\alpha$ is a parameter. In this paper, we characterize conjugate symmetric statistical structures and their particular case—structures of constant $\alpha$-curvature. As an example, a description of a structure with $\alpha$-connection of constant curvature on a two-dimensional statistical Pareto model is given. We prove that the two-dimensional logistic model has a $2$-connection of constant negative curvature and the two-dimensional Weibull—Gnedenko model has a $1$-connection of constant positive curvature. Both these models possess conjugate symmetric statistical structures. For the case of a manifold $\widehat{M}$ with a torsion-free linear connection $\widehat{\nabla}$ immersed in a Riemannian manifold with statistical structure $(g,K)$, a criterion is obtained that a statistical structure with an appropriate $\widehat{\alpha}$-connection $\widehat{\nabla}$ is induced on the preimage.
Keywords: Riemannian metric, statistical structure, conjugate symmetric statistical manifold, statistical model, second fundamental form, relatively affine mapping.
Mots-clés : $\alpha$-connection
@article{INTO_2023_220_a11,
     author = {A. A. Rylov},
     title = {Statistical structures on manifolds and their immersions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {113--124},
     publisher = {mathdoc},
     volume = {220},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_220_a11/}
}
TY  - JOUR
AU  - A. A. Rylov
TI  - Statistical structures on manifolds and their immersions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 113
EP  - 124
VL  - 220
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_220_a11/
LA  - ru
ID  - INTO_2023_220_a11
ER  - 
%0 Journal Article
%A A. A. Rylov
%T Statistical structures on manifolds and their immersions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 113-124
%V 220
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_220_a11/
%G ru
%F INTO_2023_220_a11
A. A. Rylov. Statistical structures on manifolds and their immersions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 1, Tome 220 (2023), pp. 113-124. http://geodesic.mathdoc.fr/item/INTO_2023_220_a11/

[1] Morozova E. A., Chentsov N. N., “Estestvennaya geometriya semeistv veroyatnostnykh zkonov”, Itogi nauki i tekhn. Sovr. probl. mat. Fundam. napr., 83 (1991), 133–265

[2] Rylov A. A., “Svyaznosti, sovmestimye s metrikoi, i statisticheskie mnogoobraziya”, Izv. vuzov. Mat., 1992, no. 12, 47–56

[3] Rylov A. A., “Svyaznosti, sovmestimye s metrikoi, v teorii statisticheskikh mnogoobrazii”, Izv. vuzov. Mat., 1994, no. 3, 62–64

[4] Rylov A. A., “Svyaznosti Amari—Chentsova na logisticheskoi modeli”, Izv. Penzensk. gos. ped. in-ta im. V. G. Belinskogo., 2011, no. 26, 195–206

[5] Rylov A. A., “Svyaznosti postoyannoi krivizny na statisticheskoi modeli Pareto”, Izv. Penzensk. gos. ped. in-ta im. V. G. Belinskogo., 2012, no. 30, 155–163

[6] Amari S., Information Geometry and Its Applications, Springer, 2016

[7] Arwini K., Dodson C. T. J., Information Geometry: Near Randomness and Near Independence, Springer-Verlag, 2008

[8] Furuhata H., “Hypersurfaces in statistical manifolds”, Differ. Geom. Appl., 27:3 (2009), 420–429

[9] Furuhata H., Hasegawa I., “Submanifold Theory in Holomorphic Statistical Manifolds”, Geometry of Cauchy–Riemann Submanifolds, Springer, Singapore, 2016, 179–215

[10] Ivanova R., “A geometric observation on four statistical parameter spaces”, Tensor, N.S., 72 (2010), 188–195

[11] Lauritzen S., “Conjugate connections in statistical theory”, Geometrization of Statistical Theory, ed. Dodson C. T. J., Lancaster, 1987, 33–51

[12] Lauritzen S., “Statistical manifolds”, Differential Geometry in Statistical Inference, Inst. of Math. Statistics, Hayward, California, 1987, 163–216

[13] Matsuzoe H., “Complex statistical manifolds and complex affine immersions”, Current Developments in Differential Geometry and Its Related Fields, World Scientific, Singapore, 2016, 183–199

[14] Min C. R., Choe S. O., An Y. H., “Statistical immersions between statistical manifolds of constant curvature”, Glob. J. Adv. Res. Class. Mod. Geom., 3:2 (2014), 66–75

[15] Nielsen F., “An elementary introduction to information geometry”, Entropy., 22 (2020), 1100

[16] Nore T., “Second fundamental form of a map”, Ann. Mat. Pura Appl. IV. Ser., 146 (1987), 281–310

[17] Opozda B., “Bochner's technique for statistical structures”, Ann. Glob. Anal. Geom., 48 (2015), 357–395

[18] Rylov A., “Constant curvature connections on statistical models”, Information Geometry and Its Applications, Springer, Cham, 2018, 349–361

[19] Siddiqui A. N., Shahid M. H., Lee J. W., “On Ricci curvature of submanifolds in statistical manifolds of constant (quasi-constant) curvature”, AIMS Mathematics., 5:4 (2020), 3495–3509

[20] Siddiqui A. N., Chen B.-Y., Siddiqi M. D., “Chen inequalities for statistical submersions between statistical manifolds”, Int. J. Geom. Meth. Mod. Phys., 18:4 (2021), 2150049

[21] Takano K., “Statistical manifolds with almost contact structures and its statistical submersions”, J. Geom., 85 (2006), 171–187

[22] Yano K., Ishihara S., “Harmonic and relatively affine mappings”, J. Differ. Geom., 10 (1975), 501–509