Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_220_a11, author = {A. A. Rylov}, title = {Statistical structures on manifolds and their immersions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {113--124}, publisher = {mathdoc}, volume = {220}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_220_a11/} }
TY - JOUR AU - A. A. Rylov TI - Statistical structures on manifolds and their immersions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 113 EP - 124 VL - 220 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_220_a11/ LA - ru ID - INTO_2023_220_a11 ER -
A. A. Rylov. Statistical structures on manifolds and their immersions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 1, Tome 220 (2023), pp. 113-124. http://geodesic.mathdoc.fr/item/INTO_2023_220_a11/
[1] Morozova E. A., Chentsov N. N., “Estestvennaya geometriya semeistv veroyatnostnykh zkonov”, Itogi nauki i tekhn. Sovr. probl. mat. Fundam. napr., 83 (1991), 133–265
[2] Rylov A. A., “Svyaznosti, sovmestimye s metrikoi, i statisticheskie mnogoobraziya”, Izv. vuzov. Mat., 1992, no. 12, 47–56
[3] Rylov A. A., “Svyaznosti, sovmestimye s metrikoi, v teorii statisticheskikh mnogoobrazii”, Izv. vuzov. Mat., 1994, no. 3, 62–64
[4] Rylov A. A., “Svyaznosti Amari—Chentsova na logisticheskoi modeli”, Izv. Penzensk. gos. ped. in-ta im. V. G. Belinskogo., 2011, no. 26, 195–206
[5] Rylov A. A., “Svyaznosti postoyannoi krivizny na statisticheskoi modeli Pareto”, Izv. Penzensk. gos. ped. in-ta im. V. G. Belinskogo., 2012, no. 30, 155–163
[6] Amari S., Information Geometry and Its Applications, Springer, 2016
[7] Arwini K., Dodson C. T. J., Information Geometry: Near Randomness and Near Independence, Springer-Verlag, 2008
[8] Furuhata H., “Hypersurfaces in statistical manifolds”, Differ. Geom. Appl., 27:3 (2009), 420–429
[9] Furuhata H., Hasegawa I., “Submanifold Theory in Holomorphic Statistical Manifolds”, Geometry of Cauchy–Riemann Submanifolds, Springer, Singapore, 2016, 179–215
[10] Ivanova R., “A geometric observation on four statistical parameter spaces”, Tensor, N.S., 72 (2010), 188–195
[11] Lauritzen S., “Conjugate connections in statistical theory”, Geometrization of Statistical Theory, ed. Dodson C. T. J., Lancaster, 1987, 33–51
[12] Lauritzen S., “Statistical manifolds”, Differential Geometry in Statistical Inference, Inst. of Math. Statistics, Hayward, California, 1987, 163–216
[13] Matsuzoe H., “Complex statistical manifolds and complex affine immersions”, Current Developments in Differential Geometry and Its Related Fields, World Scientific, Singapore, 2016, 183–199
[14] Min C. R., Choe S. O., An Y. H., “Statistical immersions between statistical manifolds of constant curvature”, Glob. J. Adv. Res. Class. Mod. Geom., 3:2 (2014), 66–75
[15] Nielsen F., “An elementary introduction to information geometry”, Entropy., 22 (2020), 1100
[16] Nore T., “Second fundamental form of a map”, Ann. Mat. Pura Appl. IV. Ser., 146 (1987), 281–310
[17] Opozda B., “Bochner's technique for statistical structures”, Ann. Glob. Anal. Geom., 48 (2015), 357–395
[18] Rylov A., “Constant curvature connections on statistical models”, Information Geometry and Its Applications, Springer, Cham, 2018, 349–361
[19] Siddiqui A. N., Shahid M. H., Lee J. W., “On Ricci curvature of submanifolds in statistical manifolds of constant (quasi-constant) curvature”, AIMS Mathematics., 5:4 (2020), 3495–3509
[20] Siddiqui A. N., Chen B.-Y., Siddiqi M. D., “Chen inequalities for statistical submersions between statistical manifolds”, Int. J. Geom. Meth. Mod. Phys., 18:4 (2021), 2150049
[21] Takano K., “Statistical manifolds with almost contact structures and its statistical submersions”, J. Geom., 85 (2006), 171–187
[22] Yano K., Ishihara S., “Harmonic and relatively affine mappings”, J. Differ. Geom., 10 (1975), 501–509