Centrally essential rings and semirings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 60-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this survey, we systematically examine rings and semirings that are either commutative or satisfy the following condition: for any noncentral element $a$, there exist nonzero central elements $x$ and $y$ such that $ax=y$.
Keywords: ring, associative ring, commutative ring, centrally essential ring, group algebra, ideal.
Mots-clés : module
@article{INTO_2023_219_a6,
     author = {A. Tuganbaev},
     title = {Centrally essential rings and semirings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {60--130},
     publisher = {mathdoc},
     volume = {219},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_219_a6/}
}
TY  - JOUR
AU  - A. Tuganbaev
TI  - Centrally essential rings and semirings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 60
EP  - 130
VL  - 219
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_219_a6/
LA  - ru
ID  - INTO_2023_219_a6
ER  - 
%0 Journal Article
%A A. Tuganbaev
%T Centrally essential rings and semirings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 60-130
%V 219
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_219_a6/
%G ru
%F INTO_2023_219_a6
A. Tuganbaev. Centrally essential rings and semirings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 60-130. http://geodesic.mathdoc.fr/item/INTO_2023_219_a6/

[1] Dubrovin N. I., “Ratsionalnye zamykaniya gruppovykh kolets levouporyadochennykh grupp”, Mat. sb., 184:7 (1993), 3–48 | MR | Zbl

[2] Elizarov V. P., “O teoremakh Goldi”, Sib. mat. zh., 10:1 (1969), 58–63 | MR | Zbl

[3] Zlydnev D. V., “Koltsa chastnykh kolets s bolshim tsentrom”, Vestn. Mosk. un-ta. Ser. 1. Mat. mekh., 2014, no. 2, 25–30 | MR

[4] Markov V. T., Tuganbaev A. A., “Tsentralno suschestvennye koltsa”, Diskr. mat., 30:2 (2018), 55–61 | DOI | MR

[5] Markov V. T., Tuganbaev A. A., “Tsentralno suschestvennye koltsa, kotorye ne obyazatelno unitalny ili assotsiativny”, Diskret. matem., 30:4 (2018), 42–47 | DOI | MR

[6] Tuganbaev A. A., “Algebry kvaternionov nad kommutativnymi koltsami”, Mat. zametki., 53:2 (1993), 126–131 | MR | Zbl

[7] Tuganbaev A. A., “Distributivnye polupervichnye koltsa”, Mat. zametki., 58:5 (1995), 736–761 | MR | Zbl

[8] Cherednikova A. V., “Koltsa kvaziendomorfizmov silno nerazlozhimykh abelevykh grupp bez krucheniya ranga $3$”, Mat. zametki., 63:5 (1998), 763–773 | DOI | MR | Zbl

[9] Albert A. A., “Quadratic forms permitting composition”, Ann. Math., 43:1 (1942), 161–177 | DOI

[10] Amitsur S. A., “Radicals of polynomial rings”, Can. J. Math., 8 (1956), 355–361 | DOI

[11] Bourbaki N., Algebra I: Chapters 1–3, Springer-Verlag, Berlin–Heidelberg, 1989

[12] Brown R. B., “On generalized Cayley–Dickson algebras”, Pac. J. Math., 20:3 (1967), 415–422 | DOI

[13] Brown K. A., “On zero divisors in group rings”, Bull. London Math. Soc., 8:3 (1976), 251–256 | DOI

[14] Brown K. A., “Quotient rings of group rings”, Compos. Math., 36:3 (1978), 243–254

[15] Camillo V., “Distributive modules”, J. Algebra., 36:1 (1975), 16–25 | DOI

[16] Clifford A. H., Prieston G. B., The Algebraic Theory of Semigroups, Am. Math. Soc., Providence, Rhode Island, 1961

[17] Corner A. L. S., Göbel R., “Prescribing endomorphism algebras, a unified treatmend”, Proc. London Math. Soc., 50:3 (1985), 447–479

[18] Dicman A. P., “On $p$-groups”, Dokl. Akad. Nauk SSSR., 15 (1937), 71–76

[19] Drozd Y. A., Kirichenko V. V., Finite Dimensional Algebras, Springer-Verlag, Berlin–Heidelberg, 1994 | DOI

[20] Dugas M., Göbel R., “Every cotorsion-free algebra is an endomorphism algebra”, Math. Z., 181:4 (1982), 451–470 | DOI

[21] Faticoni T. G., Direct Sum Decompositions of Torsion-Free Finite Rank Groups, Chapman and Hall/CRC, New York, 2007 | DOI

[22] Flaut C., “Divison algebras with dimension $2^t$, $t\in\mathbb{N}$”, An. Ştiint. Univ. “Ovidius” Constanţa. Ser. Mat., 13:2 (2006), 31–38

[23] Flaut C., Shpakivskyi V., “Some identities in algebras obtained by the Cayley–Dickson process”, Adv. Appl. Clifford Algebras., 23:1 (2013), 63–76 | DOI

[24] Flaut C., Ştefănescu M., “Some equations over generalized quaternion and octonion division algebras”, Bull. Math. Soc. Sci. Math. Roum., 52 (100):4 (2009), 427–439

[25] Fuchs L., Abelian Groups, Springer Cham, 2015 | DOI

[26] The GAP Group. GAP – Groups, Algorithms, Programming – a System for Computational Discrete Algebra https://www.gap-system.org

[27] Golan J. S., Semirings and Their Applications, Springer, Dordrecht–Boston–London, 1999 | DOI

[28] Goodearl K. R., Von Neumann Regular Rings, Pitman, London, 1979

[29] Hall M., The Theory of Groups, MacMillan, New York, 1959

[30] Hebisch U., Weinert H. J., Semirings: Algebraic Theory and Application in Computer Science, World Scientific, Singapore

[31] Herstein I. N., Noncommutative Rings, Am. Math. Soc., 2005

[32] Herstein I. N., Small L. W., “Rings of quotients of group algebras”, J. Algebra., 19:2 (1971), 153–155 | DOI

[33] Jelisiejew J., “On commutativity of ideal extensions”, Commun. Algebra., 44:5 (2016), 1931–1940 | DOI

[34] Jensen C. U., “A remark on arithmetical rings”, Proc. Am. Math. Soc., 15:6 (1964), 951–954 | DOI

[35] Kaplansky I., Berberian S. K., Rings of Operators, Benjamin, New York, 1968

[36] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Kluwer Academic Pubishers, Dordrecht, Netherlands, 2003

[37] Lam T. Y., A First Course in Noncommutative Rings, Springer-Verlag, New York, 2001

[38] Lambek J., Lectures on Rings and Modules, Am. Math. Soc., 2009

[39] Lyubimtsev O. V., Tuganbaev A. A., “Centrally essential endomorphism rings of abelian groups”, Commun. Algebra., 48:3 (2020), 1249–1256 | DOI

[40] Lyubimtsev O. V., Tuganbaev A. A., “Centrally essential torsion-free rings of finite rank”, Beitr. Algebra Geom., 62:3 (2021), 615–622 | DOI

[41] Lyubimtsev O. V., Tuganbaev A. A., “Centrally essential group algebras and classical rings of fractions”, Lobachevskii J. Math., 42:12 (2021), 2890–2894 | DOI

[42] Lyubimtsev O. V., Tuganbaev A. A., “Centrally essential semirings”, Lobachevskii J. Math., 43:3 (2022), 653–658 | DOI

[43] Lyubimtsev O. V., Tuganbaev A. A., “Local centrally essential subalgebras of rriangular algebras”, Lin. Multilin. Algebra., 70:13 (2022), 2415–2424 | DOI

[44] Lyubimtsev O. V., Tuganbaev A. A., Centrally essential semigroup algebras, arXiv: abs/2204.10518 | DOI

[45] Lyubimtsev O. V., Tuganbaev A. A., Ideals and Factor Rings of Centrally Essential Rings, arXiv: abs/2204.10507 | DOI

[46] Markov V. T., Tuganbaev A. A., “Centrally essential group algebras”, J. Algebra., 512:15 (2018), 109–118 | DOI

[47] Markov V. T., Tuganbaev A. A., “Rings essential over their centers”, Commun. Algebra., 47:4 (2019), 1642–1649 | DOI

[48] Markov V. T., Tuganbaev A. A., “Rings with polynomial identity and centrally essential rings”, Beitr. Algebra Geom., 60:4 (2019), 657–661 | DOI

[49] Markov V. T., Tuganbaev A. A., “Cayley–Dickson process and centrally essential rings”, J. Algebra Appl., 19:5 (2020), 1950229.1–1950229.10 | DOI

[50] Markov V. T., Tuganbaev A. A., “Uniserial Artinian centrally essential rings”, Beitr. Algebra Geom., 61:1 (2020), 23–33 | DOI

[51] Markov V. T., Tuganbaev A. A., “Constructions of centrally essential rings”, Commun. Algebra., 48:1 (2020), 198–203 | DOI

[52] Markov V. T., Tuganbaev A. A., “Uniserial Noetherian centrally essential rings”, Commun. Algebra., 48:1 (2020), 149–153 | DOI

[53] Markov V. T., Tuganbaev A. A., “Distributive Noetherian centrally essential rings”, J. Algebra Appl., 2020 | DOI

[54] Năstăsescu C., Popescu N., “Anneaux semi-artiniens”, Bull. Soc. Math. France., 96 (1968), 357–368 | DOI

[55] Nishigôri N., “On some properties of $FC$-groups”, J. Sci. Hiroshima Univ. Ser. A., 21:2 (1957), 99–105

[56] Okniński J., Semigroup Algebras, Marcel Dekker, New York–Basel, 1991

[57] Passman D. S., Infinite Group Rings, Marcel Dekker, 1971

[58] Passman D. S., The Algebraic Structure of Group Rings, Wiley, New York, 1977

[59] Pierce R. S., Vinsonhaler C. I., “Realizing central division algebras”, Pac. J. Math., 109:1 (1983), 165-–177 | DOI

[60] Pumplün S., Astier V., “Nonassociative quaternion algebras over rings”, Isr. J. Math., 155 (2006), 125–147 | DOI

[61] Rowen L., “Some results on the center of a ring with polynomial identity”, Bull. Am. Math. Soc., 79:1 (1973), 219–223 | DOI

[62] Rowen L. H., Polynomial Identities in Ring Theory, Academic Press, New York, 1980

[63] Rowen L. H., Ring Theory, Academic Press, New York, 1988

[64] Schafer R. D., An Introduction to Nonassociative Algebras, Academic Press, New York, 1966

[65] Scott W. R., Group Theory, Prentice Hall, Englewood Cliffs, 1964

[66] Sehgal S. K., “Nilpotent elements in group rings”, Manuscr. Math., 15:1 (1975), 65–80 | DOI

[67] Stephenson W., “Modules whose lattice of submodules is distributive”, Proc. London Math. Soc., s3-28:2 (1974), 291–310 | DOI

[68] Suprunenko D. A., Tyschkevich R. I., Commutative Matrices, Academic Press, New York, 1968

[69] Tuganbaev A. A., Semidistributive Modules and Rings, Springer, Dordrecht Netherlands, 1998

[70] Tuganbaev A. A., “Centrally essential rings”, Lobachevskii J. Math., 41:2 (2020), 136–144

[71] Tuganbaev A. A., “On rings of weak global dimension at most one”, Mathematics., 9:21 (2021), 2643 | DOI

[72] Waterhouse W. C., “Nonassociative quaternion algebras”, Algebras Groups Geom., 4:3 (1987), 365–378

[73] Wisbauer R., Foundations of Module and Ring Theory: A Handbook for Study and Research, Gordon and Breach, Philadelphia, 1991

[74] Zariski O., Samuel P., Commutative Algebra. I, Springer-Verlag, New York

[75] Zhevlakov K. A., Slin'ko A. M., Shestakov I. P., Shirshov A. I., Rings That Are Nearly Associative, Academic Press, New York–London, 1982