Centrally essential semirings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 44-49
Voir la notice de l'article provenant de la source Math-Net.Ru
A semiring is said to be centrally essential if, for every nonzero element $x$, there exist nonzero central elements $y$ and $z$ such that $xy=z$. We give several examples of noncommutative centrally essential semirings and describe some properties of additively cancellative, centrally essential semirings.
Keywords:
centrally essential semiring, additively cancellative semiring.
@article{INTO_2023_219_a3,
author = {O. V. Ljubimtsev and A. Tuganbaev},
title = {Centrally essential semirings},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {44--49},
publisher = {mathdoc},
volume = {219},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_219_a3/}
}
TY - JOUR AU - O. V. Ljubimtsev AU - A. Tuganbaev TI - Centrally essential semirings JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 44 EP - 49 VL - 219 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_219_a3/ LA - ru ID - INTO_2023_219_a3 ER -
O. V. Ljubimtsev; A. Tuganbaev. Centrally essential semirings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 44-49. http://geodesic.mathdoc.fr/item/INTO_2023_219_a3/