Centrally essential semirings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 44-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semiring is said to be centrally essential if, for every nonzero element $x$, there exist nonzero central elements $y$ and $z$ such that $xy=z$. We give several examples of noncommutative centrally essential semirings and describe some properties of additively cancellative, centrally essential semirings.
Keywords: centrally essential semiring, additively cancellative semiring.
@article{INTO_2023_219_a3,
     author = {O. V. Ljubimtsev and A. Tuganbaev},
     title = {Centrally essential semirings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {44--49},
     publisher = {mathdoc},
     volume = {219},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_219_a3/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
AU  - A. Tuganbaev
TI  - Centrally essential semirings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 44
EP  - 49
VL  - 219
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_219_a3/
LA  - ru
ID  - INTO_2023_219_a3
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%A A. Tuganbaev
%T Centrally essential semirings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 44-49
%V 219
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_219_a3/
%G ru
%F INTO_2023_219_a3
O. V. Ljubimtsev; A. Tuganbaev. Centrally essential semirings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 44-49. http://geodesic.mathdoc.fr/item/INTO_2023_219_a3/

[1] Markov V. T., Tuganbaev A. A., “Tsentralno suschestvennye koltsa”, Diskr. mat., 30:2 (2018), 55–61 | DOI | MR

[2] Chermnykh V. V., “Puchkovye predstavleniya polukolets”, Usp. mat. nauk., 48:5 (293) (1993), 185–186 | MR | Zbl

[3] Clifford A. H., Prieston G. B., The Algebraic Theory of Semigroups, Am. Math. Soc., Providence, Rhode Island, 1961

[4] Golan J. S., Semirings and Their Applications, Springer, Dordrecht–Boston–London, 1999

[5] Hall M., The Theory of Groups, MacMillan, New York, 1959

[6] Hebisch U., Weinert H. J., Semirings: Algebraic Theory and Application in Computer Science, World Scientific, Singapore

[7] Lyubimtsev O. V., Tuganbaev A. A., “Centrally essential endomorphism rings of abelian groups”, Commun. Algebra., 48:3 (2020), 1249–1256 | DOI

[8] Lyubimtsev O. V., Tuganbaev A. A., “Local centrally essential subalgebras of triangular algebras”, Lin. Multilin. Algebra., 70:13 (2022), 2415–2424 | DOI

[9] Lyubimtsev O. V., Tuganbaev A. A., “Centrally essential torsion-free rings of finite rank”, Beitr. Algebra Geom., 62:3 (2021), 615–622 | DOI

[10] Markov V. T., Tuganbaev A. A., “Centrally essential group algebras”, J. Algebra., 512:15 (2018), 109–118 | DOI

[11] Markov V. T., Tuganbaev A. A., “Rings essential over their centers”, Commun. Algebra., 47:4 (2019), 1642–1649 | DOI

[12] Markov V. T., Tuganbaev A. A., “Uniserial Noetherian centrally essential rings”, Commun. Algebra., 48:1 (2020), 149–153 | DOI

[13] Markov V. T., Tuganbaev A. A., “Constructions of centrally essential rings”, Commun. Algebra., 48:1 (2020), 198–203 | DOI

[14] Passman D. S., The Algebraic Structure of Group Rings, Wiley, New York, 1977

[15] Sehgal S. K., “Nilpotent elements in group rings”, Manuscr. Math., 15:1 (1975), 65–80 | DOI