Centrally essential semirings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 44-49

Voir la notice de l'article provenant de la source Math-Net.Ru

A semiring is said to be centrally essential if, for every nonzero element $x$, there exist nonzero central elements $y$ and $z$ such that $xy=z$. We give several examples of noncommutative centrally essential semirings and describe some properties of additively cancellative, centrally essential semirings.
Keywords: centrally essential semiring, additively cancellative semiring.
@article{INTO_2023_219_a3,
     author = {O. V. Ljubimtsev and A. Tuganbaev},
     title = {Centrally essential semirings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {44--49},
     publisher = {mathdoc},
     volume = {219},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_219_a3/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
AU  - A. Tuganbaev
TI  - Centrally essential semirings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 44
EP  - 49
VL  - 219
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_219_a3/
LA  - ru
ID  - INTO_2023_219_a3
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%A A. Tuganbaev
%T Centrally essential semirings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 44-49
%V 219
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_219_a3/
%G ru
%F INTO_2023_219_a3
O. V. Ljubimtsev; A. Tuganbaev. Centrally essential semirings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 219 (2023), pp. 44-49. http://geodesic.mathdoc.fr/item/INTO_2023_219_a3/