Generalized solution of the Hamilton--Jacobi equation with a three-component Hamiltonian
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 63-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a bounded time interval, we consider the Cauchy problem for the of evolutionary Hamilton–Jacobi equation in the case where the dimension of the phase variable is equal to one. The Hamiltonian depends on the phase and momentum variables and the dependence on the momentum variable is exponential. The domain in which the equation is considered is divided into three subdomains. Inside each of the three subdomains, the Hamiltonian is continuous, while at the boundaries of these subdomains it is discontinuous with respect to the phase variable. Based on the minimax/viscosity approach, we introduce the notion of a continuous generalized solution of the problem and prove its existence. The generalized solution is unique if the problem is considered in a domain bounded with respect to the phase variable.
Keywords: Hamiltonian–Jacobi equation, discontinuous Hamiltonian, noncoercive Hamiltonian, generalized solution, viscosity solution.
@article{INTO_2022_217_a7,
     author = {L. G. Shagalova},
     title = {Generalized solution of the {Hamilton--Jacobi} equation with a three-component {Hamiltonian}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {63--72},
     publisher = {mathdoc},
     volume = {217},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a7/}
}
TY  - JOUR
AU  - L. G. Shagalova
TI  - Generalized solution of the Hamilton--Jacobi equation with a three-component Hamiltonian
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 63
EP  - 72
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_217_a7/
LA  - ru
ID  - INTO_2022_217_a7
ER  - 
%0 Journal Article
%A L. G. Shagalova
%T Generalized solution of the Hamilton--Jacobi equation with a three-component Hamiltonian
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 63-72
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_217_a7/
%G ru
%F INTO_2022_217_a7
L. G. Shagalova. Generalized solution of the Hamilton--Jacobi equation with a three-component Hamiltonian. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 63-72. http://geodesic.mathdoc.fr/item/INTO_2022_217_a7/

[1] Kruzhkov S. N., “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi, I”, Mat. sb., 70 (112):3 (1966), 394–415

[2] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | MR

[4] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona—Yakobi, Nauka, M., 1991

[5] Subbotina N. N., Shagalova L. G., “O reshenii zadachi Koshi dlya uravneniya Gamiltona—Yakobi s fazovymi ogranicheniyami”, Tr. In-ta mat. mekh. UrO RAN., 17:2 (2011), 191–208 | MR

[6] Subbotina N. N., Shagalova L. G., “O nepreryvnom prodolzhenii obobschennogo resheniya uravneniya Gamiltona—Yakobi kharakteristikami, obrazuyuschimi tsentralnoe pole ekstremalei”, Tr. In-ta mat. mekh. UrO RAN., 21:2 (2015), 220–235

[7] Shagalova L. G., “Nepreryvnoe obobschennoe reshenie uravneniya Gamiltona—Yakobi s nekoertsitivnym gamiltonianom”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 186 (2020), 144–151

[8] Capuzzo-Dolcetta I., Lions P.-L., “Hamilton–Jacobi equations with state constraints”, Trans. Am. Math. Soc., 318:2 (1990), 643–683 | DOI | MR

[9] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Am. Math. Soc., 377:1 (1983), 1–42 | DOI | MR

[10] Mirică Ş., “Generalized solutions by Cauchy's method of characteristics”, Rend. Semin. Mat. Univ. Padova., 77 (1987), 317–350 | MR

[11] Saakian D. B., Rozanova O., Akmetzhanov A., “Dynamics of the Eigen and Crow–Kimura models for molecular evolution”, Phys. Rev. E., 78:4 (2008), 041908 | DOI | MR

[12] Subbotin A. I., Generalized Solutions of First-Order Partial Differential Equations. The Dynamical Optimization Perspective, Birkhäuser, Boston, 1995 | MR

[13] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, Mod. Math. Appl., 20 (2004), 2955–3091 | MR

[14] Yokoyama E., Giga Y., Rybka P., “A microscopic time scale approximation to the behavior of the local slope on the faceted surface under a nonuniformity in supersaturation”, Phys. D., 237 (2008), 2845–2855 | DOI | MR