Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_217_a7, author = {L. G. Shagalova}, title = {Generalized solution of the {Hamilton--Jacobi} equation with a three-component {Hamiltonian}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {63--72}, publisher = {mathdoc}, volume = {217}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a7/} }
TY - JOUR AU - L. G. Shagalova TI - Generalized solution of the Hamilton--Jacobi equation with a three-component Hamiltonian JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 63 EP - 72 VL - 217 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_217_a7/ LA - ru ID - INTO_2022_217_a7 ER -
%0 Journal Article %A L. G. Shagalova %T Generalized solution of the Hamilton--Jacobi equation with a three-component Hamiltonian %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 63-72 %V 217 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_217_a7/ %G ru %F INTO_2022_217_a7
L. G. Shagalova. Generalized solution of the Hamilton--Jacobi equation with a three-component Hamiltonian. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 63-72. http://geodesic.mathdoc.fr/item/INTO_2022_217_a7/
[1] Kruzhkov S. N., “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi, I”, Mat. sb., 70 (112):3 (1966), 394–415
[2] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964
[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | MR
[4] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona—Yakobi, Nauka, M., 1991
[5] Subbotina N. N., Shagalova L. G., “O reshenii zadachi Koshi dlya uravneniya Gamiltona—Yakobi s fazovymi ogranicheniyami”, Tr. In-ta mat. mekh. UrO RAN., 17:2 (2011), 191–208 | MR
[6] Subbotina N. N., Shagalova L. G., “O nepreryvnom prodolzhenii obobschennogo resheniya uravneniya Gamiltona—Yakobi kharakteristikami, obrazuyuschimi tsentralnoe pole ekstremalei”, Tr. In-ta mat. mekh. UrO RAN., 21:2 (2015), 220–235
[7] Shagalova L. G., “Nepreryvnoe obobschennoe reshenie uravneniya Gamiltona—Yakobi s nekoertsitivnym gamiltonianom”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 186 (2020), 144–151
[8] Capuzzo-Dolcetta I., Lions P.-L., “Hamilton–Jacobi equations with state constraints”, Trans. Am. Math. Soc., 318:2 (1990), 643–683 | DOI | MR
[9] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Am. Math. Soc., 377:1 (1983), 1–42 | DOI | MR
[10] Mirică Ş., “Generalized solutions by Cauchy's method of characteristics”, Rend. Semin. Mat. Univ. Padova., 77 (1987), 317–350 | MR
[11] Saakian D. B., Rozanova O., Akmetzhanov A., “Dynamics of the Eigen and Crow–Kimura models for molecular evolution”, Phys. Rev. E., 78:4 (2008), 041908 | DOI | MR
[12] Subbotin A. I., Generalized Solutions of First-Order Partial Differential Equations. The Dynamical Optimization Perspective, Birkhäuser, Boston, 1995 | MR
[13] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, Mod. Math. Appl., 20 (2004), 2955–3091 | MR
[14] Yokoyama E., Giga Y., Rybka P., “A microscopic time scale approximation to the behavior of the local slope on the faceted surface under a nonuniformity in supersaturation”, Phys. D., 237 (2008), 2845–2855 | DOI | MR