Sufficient conditions for the existence of a center in a second-order nonlinear dynamical system in a critical case
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 51-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an autonomous nonlinear system of second-order differential equations whose linear approximation matrix has a pair of purely imaginary eigenvalues and whose nonlinear part can be represented as the sum of forms of order ${\geqslant}2$ with respect to the components of the phase vector. We obtain sufficient conditions for the existence of a center or focus in a neighborhood of the zero solution.
Keywords: differential equation, critical case, complex focus, center, distinguishing between center and focus.
@article{INTO_2022_217_a6,
     author = {E. Yu. Liskina},
     title = {Sufficient conditions for the existence of a center in a second-order nonlinear dynamical system in a critical case},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {51--62},
     publisher = {mathdoc},
     volume = {217},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a6/}
}
TY  - JOUR
AU  - E. Yu. Liskina
TI  - Sufficient conditions for the existence of a center in a second-order nonlinear dynamical system in a critical case
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 51
EP  - 62
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_217_a6/
LA  - ru
ID  - INTO_2022_217_a6
ER  - 
%0 Journal Article
%A E. Yu. Liskina
%T Sufficient conditions for the existence of a center in a second-order nonlinear dynamical system in a critical case
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 51-62
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_217_a6/
%G ru
%F INTO_2022_217_a6
E. Yu. Liskina. Sufficient conditions for the existence of a center in a second-order nonlinear dynamical system in a critical case. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 51-62. http://geodesic.mathdoc.fr/item/INTO_2022_217_a6/

[1] Amelkin V. V., Lukashevich L. A., Sadovskii A. P., Nelineinye kolebaniya v sistemakh vtorogo poryadka, Izd-vo BGU, Minsk, 1982

[2] Andreev A. F., Osobye tochki differentsialnykh uravnenii, Vysheishaya shkola, Minsk, 1979

[3] Andreev A. F., Andreeva I. A., Fazovye portrety odnogo semeistva kubicheskikh sistem v kruge Puankare, Lambert Academic, 2017

[4] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1991

[5] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[6] Ilyashenko Yu. S., Yakovenko S. Yu., Analiticheskaya teoriya differentsialnykh uravnenii. T. 1, MTsNMO, M., 2013

[7] Leonov G. A., Kuznetsov N. V., Kudryashova E. V., Kuznetsova O. A., “Sovremennye metody simvolnykh vychislenii: lyapunovskie velichiny i 16-ya problema Gilberta”, Tr. SPIIRAN., 2011, no. 16, 5–36

[8] Liskina E. Yu., “O dostatochnykh usloviyakh suschestvovaniya tsentra nelineinoi dinamicheskoi sistemy vtorogo poryadka”, Izv. RAEN. Differ. uravn., 2007, no. 12, 32–38

[9] Liskina E. Yu., “Problema suschestvovaniya mnozhestva nenulevykh periodicheskikh reshenii nelineinoi avtonomnoi dinamicheskoi sistemy vtorogo poryadka”, Vestn. RAEN., 254:3 (2015), 70–77

[10] Medvedeva N. B., “Ob analiticheskoi razreshimosti problemy razlicheniya tsentra i fokusa”, Tr. Mat. in-ta im. V. A. Steklova RAN., 254 (2006), 11–100

[11] Sadovskii A. P., “Reshenie problemy tsentra i fokusa dlya kubicheskoi sistemy nelineinykh kolebanii”, Differ. uravn., 33:2 (1997), 236–244 | MR

[12] Terekhin M. T., “Malye periodicheskie resheniya sistemy differentsialnykh uravnenii”, Differ. uravn. mat. model., 2020, no. 1, 64–92