Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_217_a6, author = {E. Yu. Liskina}, title = {Sufficient conditions for the existence of a center in a second-order nonlinear dynamical system in a critical case}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {51--62}, publisher = {mathdoc}, volume = {217}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a6/} }
TY - JOUR AU - E. Yu. Liskina TI - Sufficient conditions for the existence of a center in a second-order nonlinear dynamical system in a critical case JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 51 EP - 62 VL - 217 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_217_a6/ LA - ru ID - INTO_2022_217_a6 ER -
%0 Journal Article %A E. Yu. Liskina %T Sufficient conditions for the existence of a center in a second-order nonlinear dynamical system in a critical case %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 51-62 %V 217 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_217_a6/ %G ru %F INTO_2022_217_a6
E. Yu. Liskina. Sufficient conditions for the existence of a center in a second-order nonlinear dynamical system in a critical case. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 51-62. http://geodesic.mathdoc.fr/item/INTO_2022_217_a6/
[1] Amelkin V. V., Lukashevich L. A., Sadovskii A. P., Nelineinye kolebaniya v sistemakh vtorogo poryadka, Izd-vo BGU, Minsk, 1982
[2] Andreev A. F., Osobye tochki differentsialnykh uravnenii, Vysheishaya shkola, Minsk, 1979
[3] Andreev A. F., Andreeva I. A., Fazovye portrety odnogo semeistva kubicheskikh sistem v kruge Puankare, Lambert Academic, 2017
[4] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1991
[5] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[6] Ilyashenko Yu. S., Yakovenko S. Yu., Analiticheskaya teoriya differentsialnykh uravnenii. T. 1, MTsNMO, M., 2013
[7] Leonov G. A., Kuznetsov N. V., Kudryashova E. V., Kuznetsova O. A., “Sovremennye metody simvolnykh vychislenii: lyapunovskie velichiny i 16-ya problema Gilberta”, Tr. SPIIRAN., 2011, no. 16, 5–36
[8] Liskina E. Yu., “O dostatochnykh usloviyakh suschestvovaniya tsentra nelineinoi dinamicheskoi sistemy vtorogo poryadka”, Izv. RAEN. Differ. uravn., 2007, no. 12, 32–38
[9] Liskina E. Yu., “Problema suschestvovaniya mnozhestva nenulevykh periodicheskikh reshenii nelineinoi avtonomnoi dinamicheskoi sistemy vtorogo poryadka”, Vestn. RAEN., 254:3 (2015), 70–77
[10] Medvedeva N. B., “Ob analiticheskoi razreshimosti problemy razlicheniya tsentra i fokusa”, Tr. Mat. in-ta im. V. A. Steklova RAN., 254 (2006), 11–100
[11] Sadovskii A. P., “Reshenie problemy tsentra i fokusa dlya kubicheskoi sistemy nelineinykh kolebanii”, Differ. uravn., 33:2 (1997), 236–244 | MR
[12] Terekhin M. T., “Malye periodicheskie resheniya sistemy differentsialnykh uravnenii”, Differ. uravn. mat. model., 2020, no. 1, 64–92