Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_217_a3, author = {I. V. Denisov}, title = {Nonlinear singularly perturbed parabolic equations with boundary conditions of the first kind}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {29--36}, publisher = {mathdoc}, volume = {217}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a3/} }
TY - JOUR AU - I. V. Denisov TI - Nonlinear singularly perturbed parabolic equations with boundary conditions of the first kind JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 29 EP - 36 VL - 217 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_217_a3/ LA - ru ID - INTO_2022_217_a3 ER -
%0 Journal Article %A I. V. Denisov %T Nonlinear singularly perturbed parabolic equations with boundary conditions of the first kind %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 29-36 %V 217 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_217_a3/ %G ru %F INTO_2022_217_a3
I. V. Denisov. Nonlinear singularly perturbed parabolic equations with boundary conditions of the first kind. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 29-36. http://geodesic.mathdoc.fr/item/INTO_2022_217_a3/
[1] Butuzov V. F., “Asimptotika resheniya raznostnogo uravneniya s malymi shagami v pryamougolnoi oblasti”, Zh. vychisl. mat. mat. fiz., 12:3 (1972), 582–597
[2] Butuzov V. F., Nesterov A. V., “Ob odnom singulyarno vozmuschennom uravnenii parabolicheskogo tipa”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. mat. kibern., 1978, no. 2, 49–56
[3] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR
[4] Denisov A. I., Denisov I. V., “Uglovoi pogranichnyi sloi v kraevykh zadachakh dlya singulyarno vozmuschennykh parabolicheskikh uravnenii s nelineinostyami”, Zh. vychisl. mat. mat. fiz., 59:1 (2019), 102–117
[5] Denisov A. I., Denisov I. V., “Uglovoi pogranichnyi sloi v kraevykh zadachakh dlya singulyarno vozmuschennykh parabolicheskikh uravnenii s nemonotonnymi nelineinostyami”, Zh. vychisl. mat. mat. fiz., 59:9 (2019), 1581–1590
[6] Denisov A. I., Denisov I. V., “Matematicheskie modeli protsessov goreniya”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 185 (2020), 82–88
[7] Denisov I. V., “Pervaya kraevaya zadacha dlya kvazilineinogo singulyarno vozmuschennogo parabolicheskogo uravneniya v pryamougolnike”, Zh. vychisl. mat. mat. fiz., 36:10 (1996), 56–72 | MR
[8] Denisov I. V., “Uglovoi pogranichnyi sloi v kraevykh zadachakh dlya singulyarno vozmuschennykh parabolicheskikh uravnenii s kvadratichnoi nelineinostyu”, Zh. vychisl. mat. mat. fiz., 57:2 (2017), 255–274
[9] Denisov I. V., “Uglovoi pogranichnyi sloi v kraevykh zadachakh dlya singulyarno vozmuschennykh parabolicheskikh uravnenii s monotonnoi nelineinostyu”, Zh. vychisl. mat. mat. fiz., 58:4 (2018), 1–11
[10] Denisov I. V., “Uglovoi pogranichnyi sloi v kraevykh zadachakh dlya singulyarno vozmuschennykh parabolicheskikh uravnenii s kubicheskimi nelineinostyami”, Zh. vychisl. mat. mat. fiz., 61:2 (2021), 256–267
[11] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differ. uravn., 31:7 (1995), 1132–1139 | MR
[12] Chaplygin S. A., Osnovaniya novogo sposoba priblizhennogo integrirovaniya differentsialnykh uravnenii, 1919, M.
[13] Amann H., “On the existence of positive solutions of nonlinear elliptic boundary-value problems”, Indiana Univ. Math. J., 21:2 (1971), 125–146 | DOI | MR
[14] Amann H., “Periodic solutions of semilinear parabolic equations”, Nonlinear Analysis. A Collection of Papers in Honor of E. H. Rothe, eds. Cesari L., Kannan R., Weinberger H., Academic Press, New York, 1978, 1–29 | MR
[15] Sattinger D. H., “Monotone methods in nonlinear elliptic and parabolic boundary-value problems”, Indiana Univ. Math. J., 21:11 (1972), 979–1000 | DOI | MR