Nonlinear singularly perturbed parabolic equations with boundary conditions of the first kind
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 29-36

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a review of applications of the method of angular boundary functions to nonlinear equations. We consider the first boundary-value problem for the following singularly perturbed parabolic equation in a rectangle: \begin{equation*} \epsilon^2\left(a^2\frac{\partial^2 u}{\partial x^2} -\frac{\partial u}{\partial t}\right)=F(u,x,t,\epsilon), \end{equation*} where the function $F$ is nonlinear with respect to the variable $u$. We consider the case where the function $F$ is quadratic or cubic in the variable $u$ at the corner points of the rectangle and examine the possibility of constructing a complete asymptotic expansion of the solution of the problem as $\epsilon\rightarrow 0$.
Keywords: boundary layer, asymptotic approximation, singularly perturbed equation.
@article{INTO_2022_217_a3,
     author = {I. V. Denisov},
     title = {Nonlinear singularly perturbed parabolic equations with boundary conditions of the first kind},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {217},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a3/}
}
TY  - JOUR
AU  - I. V. Denisov
TI  - Nonlinear singularly perturbed parabolic equations with boundary conditions of the first kind
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 29
EP  - 36
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_217_a3/
LA  - ru
ID  - INTO_2022_217_a3
ER  - 
%0 Journal Article
%A I. V. Denisov
%T Nonlinear singularly perturbed parabolic equations with boundary conditions of the first kind
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 29-36
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_217_a3/
%G ru
%F INTO_2022_217_a3
I. V. Denisov. Nonlinear singularly perturbed parabolic equations with boundary conditions of the first kind. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 29-36. http://geodesic.mathdoc.fr/item/INTO_2022_217_a3/