Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_217_a2, author = {Yu. P. Virchenko and A. E. Novoseltseva}, title = {Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {20--28}, publisher = {mathdoc}, volume = {217}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a2/} }
TY - JOUR AU - Yu. P. Virchenko AU - A. E. Novoseltseva TI - Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$ JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 20 EP - 28 VL - 217 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_217_a2/ LA - ru ID - INTO_2022_217_a2 ER -
%0 Journal Article %A Yu. P. Virchenko %A A. E. Novoseltseva %T Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$ %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 20-28 %V 217 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_217_a2/ %G ru %F INTO_2022_217_a2
Yu. P. Virchenko; A. E. Novoseltseva. Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 20-28. http://geodesic.mathdoc.fr/item/INTO_2022_217_a2/
[13] Virchenko Yu. P., Novoseltseva A. E., “Giperbolicheskie uravneniya pervogo poryadka v $\mathbb{R}^3$”, Mat. Mezhdunar. konf. «Sovremennye metody teorii funktsii i smezhnye problemy» (Voronezh, 28 yanvarya – 2 fevralya 2021), VGU, Voronezh, 2021, 81
[14] Virchenko Yu. P., Subbotin A. V., “Opisanie klassa evolyutsionnykh uravnenii ferrodinamiki”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 170 (2019), 15–30
[15] Virchenko Yu. P., Subbotin A. V., “Matematicheskie zadachi konstruirovaniya evolyutsionnykh uravnenii dinamiki kondensirovannykh sred”, Mat. Mezhdunar. nauch. konf. «Differentsialnye uravneniya i smezhnye problemy» (Sterlitamak, 25-29 iyunya 2018 g.), BashGU, Ufa, 2018, 262–264
[16] Virchenko Yu. P., Subbotin A. V., “Uravneniya dinamiki kondensirovannykh sred s lokalnym zakonom sokhraneniya”, Mat. V Mezhdunar. nauch. konf. «Nelokalnye kraevye zadachi i rodstvennye problemy matematicheskoi biologii, informatiki i fiziki» (Nalchik, 4-7 dekabrya 2018 g.), IPMA KBNTs RAN, Nalchik, 2018, 59
[17] Virchenko Yu. P., Subbotin A. V., “Opisanie klassa evolyutsionnykh uravnenii divergentnogo tipa dlya vektornogo polya”, Mat. IV Vseross. nauch.-prakt. konf. «Sovremennye problemy fiziko-matematicheskikh nauk». Chast 1 (Orel, 22-25 noyabrya 2018 g.), OGU im. I. S. Turgeneva, Orel, 2018, 83–86
[18] Virchenko Yu. P., Subbotin A. V., “Kovariantnye differentsialnye operatory pervogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 187 (2020), 19–30
[19] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR
[20] Gurevich G. B., Osnovy teorii algebraicheskikh invariantov, GITTL, M.-L., 1948 | MR
[21] Isaev A. A., Kovalevskii M. Yu., Peletminskii S. V., “O gamiltonovom podkhode k dinamike sploshnykh sred”, Teor. mat. fiz., 102:2 (1995), 283–296 | MR
[22] Isaev A. A., Kovalevskii M. Yu., Peletminskii S. V., “Gamiltonov podkhod v teorii kondensirovannykh sred so spontanno narushennoi simmetriei”, Fiz. element. chastits atom. yadra., 27:2 (1996), 431–492
[23] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR
[24] Mac-Connell A. J., Application of Tensor Analysis, Dover, New York, 1957 | MR
[25] Spencer A. G. M., “Theory of invariants”, Continuum Physics, I. Part III, ed. Eringen A. C., Academic Press, New York, 1971, 239–353 | MR
[26] Virchenko Yu. P. Subbotin A. V., “The class of evolutionary ferrodynamic equations”, Math. Meth. Appl. Sci., 44:15 (2021), 11913–11922 | DOI | MR