Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 20-28

Voir la notice de l'article provenant de la source Math-Net.Ru

The class $\mathfrak{K}_1(\mathbb{R}^3)$ of systems of first-order quasilinear partial differential equations is considered. Such systems $\dot{\boldsymbol{u}}=\mathsf{L}[\boldsymbol{u}]$ describe the evolution of vector fields $\boldsymbol{u}(\boldsymbol{x},t)$, $\boldsymbol{x}\in\mathbb{R}^3$ in time $t\in\mathbb{R}$. The class $\mathfrak{K}_1(\mathbb{R}^3)$ consists of all systems that are invariant under translations in time $t\in\mathbb{R}$ and space $\mathbb{R}^3$ and are covariant under rotations of $\mathbb{R}^3$. We describe the class of first-order nonlinear differential operators $\mathsf{L}$ acting in the functional space $C_{1,\operatorname{loc}}(\mathbb{R}^3)$ that are evolution generators of such systems. We obtain a necessary and sufficient condition for the operator $\mathsf{L}\in\mathfrak{K}_1(\mathbb{R}^3)$ to generate a hyperbolic system.
Keywords: first-order differential operator, quasilinear system, hyperbolicity, vector field, covariance, spherical symmetry.
@article{INTO_2022_217_a2,
     author = {Yu. P. Virchenko and A. E. Novoseltseva},
     title = {Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {20--28},
     publisher = {mathdoc},
     volume = {217},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a2/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
AU  - A. E. Novoseltseva
TI  - Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 20
EP  - 28
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_217_a2/
LA  - ru
ID  - INTO_2022_217_a2
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%A A. E. Novoseltseva
%T Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 20-28
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_217_a2/
%G ru
%F INTO_2022_217_a2
Yu. P. Virchenko; A. E. Novoseltseva. Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 20-28. http://geodesic.mathdoc.fr/item/INTO_2022_217_a2/