Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 20-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class $\mathfrak{K}_1(\mathbb{R}^3)$ of systems of first-order quasilinear partial differential equations is considered. Such systems $\dot{\boldsymbol{u}}=\mathsf{L}[\boldsymbol{u}]$ describe the evolution of vector fields $\boldsymbol{u}(\boldsymbol{x},t)$, $\boldsymbol{x}\in\mathbb{R}^3$ in time $t\in\mathbb{R}$. The class $\mathfrak{K}_1(\mathbb{R}^3)$ consists of all systems that are invariant under translations in time $t\in\mathbb{R}$ and space $\mathbb{R}^3$ and are covariant under rotations of $\mathbb{R}^3$. We describe the class of first-order nonlinear differential operators $\mathsf{L}$ acting in the functional space $C_{1,\operatorname{loc}}(\mathbb{R}^3)$ that are evolution generators of such systems. We obtain a necessary and sufficient condition for the operator $\mathsf{L}\in\mathfrak{K}_1(\mathbb{R}^3)$ to generate a hyperbolic system.
Keywords: first-order differential operator, quasilinear system, hyperbolicity, vector field, covariance, spherical symmetry.
@article{INTO_2022_217_a2,
     author = {Yu. P. Virchenko and A. E. Novoseltseva},
     title = {Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {20--28},
     publisher = {mathdoc},
     volume = {217},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a2/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
AU  - A. E. Novoseltseva
TI  - Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 20
EP  - 28
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_217_a2/
LA  - ru
ID  - INTO_2022_217_a2
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%A A. E. Novoseltseva
%T Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 20-28
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_217_a2/
%G ru
%F INTO_2022_217_a2
Yu. P. Virchenko; A. E. Novoseltseva. Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 20-28. http://geodesic.mathdoc.fr/item/INTO_2022_217_a2/

[13] Virchenko Yu. P., Novoseltseva A. E., “Giperbolicheskie uravneniya pervogo poryadka v $\mathbb{R}^3$”, Mat. Mezhdunar. konf. «Sovremennye metody teorii funktsii i smezhnye problemy» (Voronezh, 28 yanvarya – 2 fevralya 2021), VGU, Voronezh, 2021, 81

[14] Virchenko Yu. P., Subbotin A. V., “Opisanie klassa evolyutsionnykh uravnenii ferrodinamiki”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 170 (2019), 15–30

[15] Virchenko Yu. P., Subbotin A. V., “Matematicheskie zadachi konstruirovaniya evolyutsionnykh uravnenii dinamiki kondensirovannykh sred”, Mat. Mezhdunar. nauch. konf. «Differentsialnye uravneniya i smezhnye problemy» (Sterlitamak, 25-29 iyunya 2018 g.), BashGU, Ufa, 2018, 262–264

[16] Virchenko Yu. P., Subbotin A. V., “Uravneniya dinamiki kondensirovannykh sred s lokalnym zakonom sokhraneniya”, Mat. V Mezhdunar. nauch. konf. «Nelokalnye kraevye zadachi i rodstvennye problemy matematicheskoi biologii, informatiki i fiziki» (Nalchik, 4-7 dekabrya 2018 g.), IPMA KBNTs RAN, Nalchik, 2018, 59

[17] Virchenko Yu. P., Subbotin A. V., “Opisanie klassa evolyutsionnykh uravnenii divergentnogo tipa dlya vektornogo polya”, Mat. IV Vseross. nauch.-prakt. konf. «Sovremennye problemy fiziko-matematicheskikh nauk». Chast 1 (Orel, 22-25 noyabrya 2018 g.), OGU im. I. S. Turgeneva, Orel, 2018, 83–86

[18] Virchenko Yu. P., Subbotin A. V., “Kovariantnye differentsialnye operatory pervogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 187 (2020), 19–30

[19] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR

[20] Gurevich G. B., Osnovy teorii algebraicheskikh invariantov, GITTL, M.-L., 1948 | MR

[21] Isaev A. A., Kovalevskii M. Yu., Peletminskii S. V., “O gamiltonovom podkhode k dinamike sploshnykh sred”, Teor. mat. fiz., 102:2 (1995), 283–296 | MR

[22] Isaev A. A., Kovalevskii M. Yu., Peletminskii S. V., “Gamiltonov podkhod v teorii kondensirovannykh sred so spontanno narushennoi simmetriei”, Fiz. element. chastits atom. yadra., 27:2 (1996), 431–492

[23] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[24] Mac-Connell A. J., Application of Tensor Analysis, Dover, New York, 1957 | MR

[25] Spencer A. G. M., “Theory of invariants”, Continuum Physics, I. Part III, ed. Eringen A. C., Academic Press, New York, 1971, 239–353 | MR

[26] Virchenko Yu. P. Subbotin A. V., “The class of evolutionary ferrodynamic equations”, Math. Meth. Appl. Sci., 44:15 (2021), 11913–11922 | DOI | MR