Convergence of an approximate solution of the Showalter--Sidorov--Dirichlet problem for the modified Boussinesq equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 11-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain necessary and sufficient conditions for the existence of a unique solution of the Showalter–Sidorov–Dirichlet problem for a second-order, semilinear Sobolev-type equation. For the initial-boundary-value problem considered, using the Galerkin method, we construct an approximate solution as an expansion in the system of eigenfunctions of the homogeneous Dirichlet problem for the Laplace operator. The proof of the $*$-weak convergence of the Galerkin approximations to the exact solution is based on a priori estimates, embedding theorems, and the Gronwall lemma.
Mots-clés : Sobolev-type equation
Keywords: Showalter–Sidorov problem, Galerkin method, $*$-weak convergence.
@article{INTO_2022_217_a1,
     author = {E. V. Bychkov},
     title = {Convergence of an approximate solution of the {Showalter--Sidorov--Dirichlet} problem for the modified {Boussinesq} equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {217},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a1/}
}
TY  - JOUR
AU  - E. V. Bychkov
TI  - Convergence of an approximate solution of the Showalter--Sidorov--Dirichlet problem for the modified Boussinesq equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 11
EP  - 19
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_217_a1/
LA  - ru
ID  - INTO_2022_217_a1
ER  - 
%0 Journal Article
%A E. V. Bychkov
%T Convergence of an approximate solution of the Showalter--Sidorov--Dirichlet problem for the modified Boussinesq equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 11-19
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_217_a1/
%G ru
%F INTO_2022_217_a1
E. V. Bychkov. Convergence of an approximate solution of the Showalter--Sidorov--Dirichlet problem for the modified Boussinesq equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 11-19. http://geodesic.mathdoc.fr/item/INTO_2022_217_a1/

[1] Arkhipov D. G., Khabakhpashev G. A., “Novoe uravnenie dlya opisaniya neuprugogo vzaimodeistviya nelineinykh lokalizovannykh voln v dispergiruyuschikh sredakh”, Pisma v ZhETF., 39:8 (2011), 469–472

[2] Bogatyreva E. A., Manakova N. A., “Chislennoe modelirovanie protsessa neravnovesnoi protivotochnoi kapillyarnoi propitki”, Zh. vychisl. mat. mat. fiz., 56:1 (2016), 125–132 | MR

[3] Zamyshlyaeva A. A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. YuUrGU. Ser. Mat. model. progr., 7:2 (2014), 5–28

[4] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[5] Manakova N. A., Bogatyreva E. A., “O reshenii zadachi Dirikhle—Koshi dlya uravneniya Barenblatta—Gilmana”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 7 (2014), 52–60

[6] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[7] Sviridyuk G. A., “O razreshimosti singulyarnoi sistemy obyknovennykh differentsialnykh uravnenii”, Differ. uravn., 23:9 (1987), 1637–1639 | MR

[8] Sviridyuk G. A., Zagrebina S. A., “Zadacha Shouoltera—Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 3:1 (2010), 104–125

[9] Sviridyuk G. A., Zamyshlyaeva A. A., “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vysokogo poryadka”, Differ. uravn., 42:2 (2006), 252–260 | MR

[10] Sviridyuk G. A., Sukaeva T. G., “Fazovye prostranstva odnogo klassa operatornykh polulineinykh uravnenii tipa Soboleva”, Differ. uravn., 26:2 (1990), 250–258 | MR

[11] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980

[12] Chistyakov V. F., Chistyakova E. V., “Primenenie metoda naimenshikh kvadratov dlya resheniya lineinykh differentsialno-algebraicheskikh uravnenii”, Sib. zh. vychisl. mat., 16:1 (2013), 81–95 | MR

[13] Bogolubsky I. L., “Some examples of inelastic soliton interaction”, Comput. Phys. Commun., 13:2 (1977), 49–55

[14] Bychkov E. V., Zamyshlyaeva A. A., “Numerical solution of Showalter–Sidorov and Cauchy problems of ion-acoustic waves propagation mathematical model”, J. Phys. Conf. Ser., 1847:1 (2021), 012001 | DOI

[15] Clarcson P. A., LeVeque R. J., Saxton R., “Solitary wave interactions in elastic rods”, Stud. Appl. Math., 75:1 (1986), 95–122 | DOI | MR

[16] Hartman P., Ordinary Differential Equations, Wiley, New York–London–Sydney, 1964 | MR

[17] Keller A. V., “On the computational efficiency of the algorithm of the numerical solution of optimal control problems for models of Leontieff type”, J. Comput. Eng. Math., 2:2 (2015), 39–59 | DOI | MR

[18] Shafranov D. E., Kitaeva O. G., “The Barenblatt–Zheltov–Kochina model with the Showalter–Sidorov condition and additive white noise in spaces of differential forms on Riemannian manifolds without boundary”, Global Stochast. Anal., 5:2 (2018), 145–159

[19] Showalter R. E., “The Sobolev equation, I”, Appl. Anal., 5:1 (1975), 15–22 | DOI | MR

[20] Showalter R. E., “The Sobolev equation, II”, Appl. Anal., 5:2 (1975), 81–89 | DOI | MR

[21] Wang S., Chen G., “Small amplitude solutions of the generalized IMBq equation”, J. Math. Anal. Appl., 274 (2002), 846–866 | DOI | MR

[22] Xu Runzhang, Liu Yacheng, “Global existence and blow-up of solutions for generalized Pochhammer–Chree equations”, Acta Math. Sci., 30:5 (2010), 1793–1807 | DOI | MR

[23] Zamyshlyaeva A. A., Lut A. V., “Numerical investigation of the Boussinesq–Love mathematical models on geometrical graphs”, Vestn. YuUrGU. Ser. Mat. model. progr., 10:2 (2017), 137–143

[24] Zamyshlyaeva A. A., Manakova N. A., Tsyplenkova O. N., “Optimal control in linear Sobolev type mathematical models”, Vestn. YuUrGU. Ser. Mat. model. progr., 13:1 (2020), 5–27

[25] Zhang W, Ma W., “Explicit solitary wave solutions to generalized Pochhammer–Chree equations”, Appl. Math Mech., 20:6 (1999), 625–632 | MR