Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_217_a1, author = {E. V. Bychkov}, title = {Convergence of an approximate solution of the {Showalter--Sidorov--Dirichlet} problem for the modified {Boussinesq} equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {11--19}, publisher = {mathdoc}, volume = {217}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_217_a1/} }
TY - JOUR AU - E. V. Bychkov TI - Convergence of an approximate solution of the Showalter--Sidorov--Dirichlet problem for the modified Boussinesq equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 11 EP - 19 VL - 217 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_217_a1/ LA - ru ID - INTO_2022_217_a1 ER -
%0 Journal Article %A E. V. Bychkov %T Convergence of an approximate solution of the Showalter--Sidorov--Dirichlet problem for the modified Boussinesq equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 11-19 %V 217 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_217_a1/ %G ru %F INTO_2022_217_a1
E. V. Bychkov. Convergence of an approximate solution of the Showalter--Sidorov--Dirichlet problem for the modified Boussinesq equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 217 (2022), pp. 11-19. http://geodesic.mathdoc.fr/item/INTO_2022_217_a1/
[1] Arkhipov D. G., Khabakhpashev G. A., “Novoe uravnenie dlya opisaniya neuprugogo vzaimodeistviya nelineinykh lokalizovannykh voln v dispergiruyuschikh sredakh”, Pisma v ZhETF., 39:8 (2011), 469–472
[2] Bogatyreva E. A., Manakova N. A., “Chislennoe modelirovanie protsessa neravnovesnoi protivotochnoi kapillyarnoi propitki”, Zh. vychisl. mat. mat. fiz., 56:1 (2016), 125–132 | MR
[3] Zamyshlyaeva A. A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. YuUrGU. Ser. Mat. model. progr., 7:2 (2014), 5–28
[4] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972
[5] Manakova N. A., Bogatyreva E. A., “O reshenii zadachi Dirikhle—Koshi dlya uravneniya Barenblatta—Gilmana”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 7 (2014), 52–60
[6] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007
[7] Sviridyuk G. A., “O razreshimosti singulyarnoi sistemy obyknovennykh differentsialnykh uravnenii”, Differ. uravn., 23:9 (1987), 1637–1639 | MR
[8] Sviridyuk G. A., Zagrebina S. A., “Zadacha Shouoltera—Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 3:1 (2010), 104–125
[9] Sviridyuk G. A., Zamyshlyaeva A. A., “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vysokogo poryadka”, Differ. uravn., 42:2 (2006), 252–260 | MR
[10] Sviridyuk G. A., Sukaeva T. G., “Fazovye prostranstva odnogo klassa operatornykh polulineinykh uravnenii tipa Soboleva”, Differ. uravn., 26:2 (1990), 250–258 | MR
[11] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980
[12] Chistyakov V. F., Chistyakova E. V., “Primenenie metoda naimenshikh kvadratov dlya resheniya lineinykh differentsialno-algebraicheskikh uravnenii”, Sib. zh. vychisl. mat., 16:1 (2013), 81–95 | MR
[13] Bogolubsky I. L., “Some examples of inelastic soliton interaction”, Comput. Phys. Commun., 13:2 (1977), 49–55
[14] Bychkov E. V., Zamyshlyaeva A. A., “Numerical solution of Showalter–Sidorov and Cauchy problems of ion-acoustic waves propagation mathematical model”, J. Phys. Conf. Ser., 1847:1 (2021), 012001 | DOI
[15] Clarcson P. A., LeVeque R. J., Saxton R., “Solitary wave interactions in elastic rods”, Stud. Appl. Math., 75:1 (1986), 95–122 | DOI | MR
[16] Hartman P., Ordinary Differential Equations, Wiley, New York–London–Sydney, 1964 | MR
[17] Keller A. V., “On the computational efficiency of the algorithm of the numerical solution of optimal control problems for models of Leontieff type”, J. Comput. Eng. Math., 2:2 (2015), 39–59 | DOI | MR
[18] Shafranov D. E., Kitaeva O. G., “The Barenblatt–Zheltov–Kochina model with the Showalter–Sidorov condition and additive white noise in spaces of differential forms on Riemannian manifolds without boundary”, Global Stochast. Anal., 5:2 (2018), 145–159
[19] Showalter R. E., “The Sobolev equation, I”, Appl. Anal., 5:1 (1975), 15–22 | DOI | MR
[20] Showalter R. E., “The Sobolev equation, II”, Appl. Anal., 5:2 (1975), 81–89 | DOI | MR
[21] Wang S., Chen G., “Small amplitude solutions of the generalized IMBq equation”, J. Math. Anal. Appl., 274 (2002), 846–866 | DOI | MR
[22] Xu Runzhang, Liu Yacheng, “Global existence and blow-up of solutions for generalized Pochhammer–Chree equations”, Acta Math. Sci., 30:5 (2010), 1793–1807 | DOI | MR
[23] Zamyshlyaeva A. A., Lut A. V., “Numerical investigation of the Boussinesq–Love mathematical models on geometrical graphs”, Vestn. YuUrGU. Ser. Mat. model. progr., 10:2 (2017), 137–143
[24] Zamyshlyaeva A. A., Manakova N. A., Tsyplenkova O. N., “Optimal control in linear Sobolev type mathematical models”, Vestn. YuUrGU. Ser. Mat. model. progr., 13:1 (2020), 5–27
[25] Zhang W, Ma W., “Explicit solitary wave solutions to generalized Pochhammer–Chree equations”, Appl. Math Mech., 20:6 (1999), 625–632 | MR