Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_216_a9, author = {A. Ya. Narmanov and O. Y. Qasimov and E. O. Rajabov}, title = {On geometry of conformal vector fields}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {97--105}, publisher = {mathdoc}, volume = {216}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a9/} }
TY - JOUR AU - A. Ya. Narmanov AU - O. Y. Qasimov AU - E. O. Rajabov TI - On geometry of conformal vector fields JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 97 EP - 105 VL - 216 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_216_a9/ LA - ru ID - INTO_2022_216_a9 ER -
%0 Journal Article %A A. Ya. Narmanov %A O. Y. Qasimov %A E. O. Rajabov %T On geometry of conformal vector fields %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 97-105 %V 216 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_216_a9/ %G ru %F INTO_2022_216_a9
A. Ya. Narmanov; O. Y. Qasimov; E. O. Rajabov. On geometry of conformal vector fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 97-105. http://geodesic.mathdoc.fr/item/INTO_2022_216_a9/
[1] Azamov A., Narmanov A. Ya., “O predelnykh mnozhestvakh orbit sistem vektornykh polei”, Differ. uravn., 40:2 (2004), 257–260 | MR
[2] Alekseevskii D. V., “Gruppy konformnykh preobrazovanii rimanovykh prostranstv”, Mat. sb., 89 (131):2 (10) (1972), 280–296 | MR | Zbl
[3] Zhukova N. I., “Sloeniya s lokalno stabilnymi sloyami”, Izv. vuzov. Mat., 1996, no. 7, 21–31 | MR | Zbl
[4] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii. T. 1, Nauka, M., 1981 | MR
[5] Narmanov A. Ya., Saitova S. S., “O geometrii orbit vektornykh polei Killinga”, Differ. uravn., 50:12 (2014), 1582–1589
[6] Blair D., “On the zeros of a conformal vector field”, Nagoya Math. J., 55 (1974), 1–3 | DOI | MR
[7] Ferrand J., “The action of conformal transformations on a Riemannian manifold”, Math. Ann., 304 (1996), 277–291 | DOI | MR
[8] Hermann R., “On the differential geometry of foliations”, Ann. Math. Second Ser., 72 (1960), 445–457 | DOI | MR
[9] Kaplan W., “Regular curve families filling the plane, I”, Duke Math. J., 1940, no. 7, 154–185 | MR
[10] Levitt N., Sussmann H., “On controllability by means of two vector fields”, SIAM J. Control., 1975, no. 6, 1271–1281 | DOI | MR
[11] Marcos M., “Singular Riemannian foliations with sections”, Ill. J. Math., 48:4 (2004), 1163–1182 | MR
[12] Nagano T., “Linear differential systems with singularities and an application to transitive Lie algebras”, J. Math. Soc. Jpn., 18 (1966), 398–404 | DOI | MR
[13] Narmanov A., Saitova S., “On the geometry of the reachability set of vector fields”, Differ. Equations., 53 (2017), 311–316 | DOI | MR
[14] Narmanov A. Ya., Qosimov O. Y., “On the geometry of the set of orbits of Killing vector fields on Euclidean space”, J. Geom. Symm. Phys., 55 (2020), 39–49 | DOI | MR
[15] Narmanov A., Rajabov E., “On the geometry of orbits of conformal vector fields”, J. Geom. Symm. Phys., 51 (2019), 29–39 | DOI | MR
[16] Sharief D., “Geometry of conformal vector fields”, Arab. J. Math. Sci., 23 (2017), 44–73 | MR
[17] Obata M., “The conjectures on conformal transformations of Riemannian manifolds”, Bull. Am. Math. Soc., 77 (1971), 265–270 | DOI | MR
[18] Reinhart B., “Closed metric foliations”, Michigan Math. J., 8 (1961), 7–9 | DOI | MR
[19] Sussman H., “Orbits of families of vector fields and integrability of distributions”, Trans. Am. Math. Soc., 180 (1973), 171–188 | DOI | MR
[20] Sussmann H., “Some properties of vector field systems that are not altered by small perturbations”, J. Differ. Equations., 20 (1976), 292–315 | DOI | MR
[21] Zhukova N. I., “On the stability of leaves of Riemannian roliation”, Ann. Global Anal. Geom., 7 (1987), 261–271 | DOI | MR