Cycles of two competing macroeconomic systems within a certain version of the Goodwin model
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 76-87

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the problem of competitive interaction of two macroeconomic systems. As the basic model, the well-known Goodwin model is chosen. We obtain sufficient conditions under which stable limit cycles can appear in the system considered.
Keywords: Goodwin model, competition, economic cycle, stability, asymptotic formula.
Mots-clés : bifurcation
@article{INTO_2022_216_a7,
     author = {D. A. Kulikov and O. V. Baeva},
     title = {Cycles of two competing macroeconomic systems within a certain version of the {Goodwin} model},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {76--87},
     publisher = {mathdoc},
     volume = {216},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/}
}
TY  - JOUR
AU  - D. A. Kulikov
AU  - O. V. Baeva
TI  - Cycles of two competing macroeconomic systems within a certain version of the Goodwin model
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 76
EP  - 87
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/
LA  - ru
ID  - INTO_2022_216_a7
ER  - 
%0 Journal Article
%A D. A. Kulikov
%A O. V. Baeva
%T Cycles of two competing macroeconomic systems within a certain version of the Goodwin model
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 76-87
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/
%G ru
%F INTO_2022_216_a7
D. A. Kulikov; O. V. Baeva. Cycles of two competing macroeconomic systems within a certain version of the Goodwin model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 76-87. http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/