Cycles of two competing macroeconomic systems within a certain version of the Goodwin model
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 76-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the problem of competitive interaction of two macroeconomic systems. As the basic model, the well-known Goodwin model is chosen. We obtain sufficient conditions under which stable limit cycles can appear in the system considered.
Keywords: Goodwin model, competition, economic cycle, stability, asymptotic formula.
Mots-clés : bifurcation
@article{INTO_2022_216_a7,
     author = {D. A. Kulikov and O. V. Baeva},
     title = {Cycles of two competing macroeconomic systems within a certain version of the {Goodwin} model},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {76--87},
     publisher = {mathdoc},
     volume = {216},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/}
}
TY  - JOUR
AU  - D. A. Kulikov
AU  - O. V. Baeva
TI  - Cycles of two competing macroeconomic systems within a certain version of the Goodwin model
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 76
EP  - 87
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/
LA  - ru
ID  - INTO_2022_216_a7
ER  - 
%0 Journal Article
%A D. A. Kulikov
%A O. V. Baeva
%T Cycles of two competing macroeconomic systems within a certain version of the Goodwin model
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 76-87
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/
%G ru
%F INTO_2022_216_a7
D. A. Kulikov; O. V. Baeva. Cycles of two competing macroeconomic systems within a certain version of the Goodwin model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 76-87. http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/

[13] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978

[14] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601 | MR

[15] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–-753 | MR

[16] Kulikov D. A., “Avtomodelnye periodicheskie resheniya i bifurkatsii ot nikh v zadache o vzaimodeistvii dvukh slabosvyazannykh ostsillyatorov”, Izv. vuzov. Prikl. nelin. dinam., 14:5 (2006), 120–132

[17] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, GITTL, M., 1956

[18] Morozov A. D., Matematicheskie modeli teorii kolebanii, In-t komp. issl., M.-Izhevsk, 2017

[19] Bashkirtseva I., Ryazanova T., Ryashko L., “Confidence domains in the analysis of noise-unduced transition to chaos for Goodwin model of business cycles”, Int. J. Bifurcation Chaos., 24:8 (2014), 1–10 | DOI | MR

[20] Guckenheimer J., Holmes P. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, Berlin, 1983 | MR

[21] Gudwin R. M., “The nonlinear accelerator and the persistence of business cycles”, Econometrica., 19:1 (1951), 1–17 | DOI

[22] Huygens C., The pendulum clock (English translation, original publication in 1673), Iowa State Univ. Press, Iowa, 1986

[23] Keynes J. M., General Theory of Employment, Interest, and Money, Harcourt Brace, New-York, 1936 | MR

[24] Kulikov D. A., “Self-similar cycles and their local bifurcations in the problem of two weakly coupled oscillators”, J. Appl. Math. Mech., 74:4 (2010), 389–400 | DOI | MR

[25] Lorenz H. W., “Goodwin's nonlinear accelerator and chaotic motion”, J. Econ., 47:4 (1987), 413–418 | DOI | MR

[26] Lorenz H. W., Nusse H. E., “Chaotic attractors, chaotic saddles, and fractal basin boundaries: Goodwin's nonlinear accelerator model reconsidered”, Chaos Soliton Fractals., 13 (2002), 957–965 | DOI | MR

[27] Puu T., Nonlinear Economic Dynamics, Springer-Verlag, New York, 1993 | MR

[28] Ryazanova T., Jungeilges J., “Noise-induced transitions in a stochastic Goodwin-type business cycle model”, Struct. Change Econ. Dyn., 40 (2017), 103–115 | DOI

[29] Zhang W. B., Synergetic Economics: Time and Change in Nonlinear Economics, Springer-Verlag, Berlin, 1991 | MR