Cycles of two competing macroeconomic systems within a certain version of the Goodwin model
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 76-87
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we examine the problem of competitive interaction of two macroeconomic systems. As the basic model, the well-known Goodwin model is chosen. We obtain sufficient conditions under which stable limit cycles can appear in the system considered.
Keywords:
Goodwin model, competition, economic cycle, stability, asymptotic formula.
Mots-clés : bifurcation
Mots-clés : bifurcation
@article{INTO_2022_216_a7,
author = {D. A. Kulikov and O. V. Baeva},
title = {Cycles of two competing macroeconomic systems within a certain version of the {Goodwin} model},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {76--87},
publisher = {mathdoc},
volume = {216},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/}
}
TY - JOUR AU - D. A. Kulikov AU - O. V. Baeva TI - Cycles of two competing macroeconomic systems within a certain version of the Goodwin model JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 76 EP - 87 VL - 216 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/ LA - ru ID - INTO_2022_216_a7 ER -
%0 Journal Article %A D. A. Kulikov %A O. V. Baeva %T Cycles of two competing macroeconomic systems within a certain version of the Goodwin model %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 76-87 %V 216 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/ %G ru %F INTO_2022_216_a7
D. A. Kulikov; O. V. Baeva. Cycles of two competing macroeconomic systems within a certain version of the Goodwin model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 76-87. http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/