Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_216_a7, author = {D. A. Kulikov and O. V. Baeva}, title = {Cycles of two competing macroeconomic systems within a certain version of the {Goodwin} model}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {76--87}, publisher = {mathdoc}, volume = {216}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/} }
TY - JOUR AU - D. A. Kulikov AU - O. V. Baeva TI - Cycles of two competing macroeconomic systems within a certain version of the Goodwin model JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 76 EP - 87 VL - 216 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/ LA - ru ID - INTO_2022_216_a7 ER -
%0 Journal Article %A D. A. Kulikov %A O. V. Baeva %T Cycles of two competing macroeconomic systems within a certain version of the Goodwin model %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 76-87 %V 216 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/ %G ru %F INTO_2022_216_a7
D. A. Kulikov; O. V. Baeva. Cycles of two competing macroeconomic systems within a certain version of the Goodwin model. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 76-87. http://geodesic.mathdoc.fr/item/INTO_2022_216_a7/
[13] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978
[14] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601 | MR
[15] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–-753 | MR
[16] Kulikov D. A., “Avtomodelnye periodicheskie resheniya i bifurkatsii ot nikh v zadache o vzaimodeistvii dvukh slabosvyazannykh ostsillyatorov”, Izv. vuzov. Prikl. nelin. dinam., 14:5 (2006), 120–132
[17] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, GITTL, M., 1956
[18] Morozov A. D., Matematicheskie modeli teorii kolebanii, In-t komp. issl., M.-Izhevsk, 2017
[19] Bashkirtseva I., Ryazanova T., Ryashko L., “Confidence domains in the analysis of noise-unduced transition to chaos for Goodwin model of business cycles”, Int. J. Bifurcation Chaos., 24:8 (2014), 1–10 | DOI | MR
[20] Guckenheimer J., Holmes P. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, Berlin, 1983 | MR
[21] Gudwin R. M., “The nonlinear accelerator and the persistence of business cycles”, Econometrica., 19:1 (1951), 1–17 | DOI
[22] Huygens C., The pendulum clock (English translation, original publication in 1673), Iowa State Univ. Press, Iowa, 1986
[23] Keynes J. M., General Theory of Employment, Interest, and Money, Harcourt Brace, New-York, 1936 | MR
[24] Kulikov D. A., “Self-similar cycles and their local bifurcations in the problem of two weakly coupled oscillators”, J. Appl. Math. Mech., 74:4 (2010), 389–400 | DOI | MR
[25] Lorenz H. W., “Goodwin's nonlinear accelerator and chaotic motion”, J. Econ., 47:4 (1987), 413–418 | DOI | MR
[26] Lorenz H. W., Nusse H. E., “Chaotic attractors, chaotic saddles, and fractal basin boundaries: Goodwin's nonlinear accelerator model reconsidered”, Chaos Soliton Fractals., 13 (2002), 957–965 | DOI | MR
[27] Puu T., Nonlinear Economic Dynamics, Springer-Verlag, New York, 1993 | MR
[28] Ryazanova T., Jungeilges J., “Noise-induced transitions in a stochastic Goodwin-type business cycle model”, Struct. Change Econ. Dyn., 40 (2017), 103–115 | DOI
[29] Zhang W. B., Synergetic Economics: Time and Change in Nonlinear Economics, Springer-Verlag, Berlin, 1991 | MR