Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_216_a6, author = {A. N. Kulikov}, title = {Invariant tori of the weakly dissipative version of the {Ginzburg---Landau} equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {66--75}, publisher = {mathdoc}, volume = {216}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a6/} }
TY - JOUR AU - A. N. Kulikov TI - Invariant tori of the weakly dissipative version of the Ginzburg---Landau equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 66 EP - 75 VL - 216 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_216_a6/ LA - ru ID - INTO_2022_216_a6 ER -
%0 Journal Article %A A. N. Kulikov %T Invariant tori of the weakly dissipative version of the Ginzburg---Landau equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 66-75 %V 216 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_216_a6/ %G ru %F INTO_2022_216_a6
A. N. Kulikov. Invariant tori of the weakly dissipative version of the Ginzburg---Landau equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 66-75. http://geodesic.mathdoc.fr/item/INTO_2022_216_a6/
[14] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[15] Karyakin N. I., Bystrov K. N., Kireev P. S., Kratkii spravochnik po fizike, Vysshaya shkola, M., 1964
[16] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601 | MR
[17] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–-753 | MR
[18] Kolesov A. Yu., Kulikov A. N., Rozov N. X., “Tsilindricheskie beguschie volny obobschennogo kubicheskogo uravneniya Shredingera”, Dokl. RAN., 406:1 (2006), 21–29 | MR
[19] Kulikov A. N., “Inertsialnye invariantnye mnogoobraziya nelineinoi polugruppy v gilbertovom prostranstve”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 186 (2020), 57–66
[20] Landau L. D., Lifshits E. M., Kurs tteoreticheskoi fiziki. T. 6. Gidrodinamika, Nauka, M., 1988 | MR
[21] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, GITTL, M.-L., 1951 | MR
[22] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950 | MR
[23] Yakubov S. Ya., “Razreshimost zadachi Koshi dlya abstraktnykh kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka i ikh prilozheniya”, Tr. Mosk. mat. o-va., 23 (1970), 37–60
[24] Aranson I. S., Kramer L., “The world of the complex Ginzburg–Landau equation”, Rev. Modern. Phys., 74 (2002), 99–143 | DOI | MR
[25] Bartuccelli M. V., Constantin P., Doering C. R., Gibbon J. D., Gisselfalt M., “On the possibility of soft and hard turbulence in the complex Ginzburg–Landau equation”, Phys. D., 44 (1990), 421–444 | DOI | MR
[26] Broer H. W., Dumortier F., van Strien S. J., Takens F., Structures in Dynamics: Finite Dimensional Deterministic Studies, 1991 | MR
[27] Kulikov A. N., Kulikov D. A., “Local bifurcations of plane running waves for the generalized cubic Schrödinger equation”, Differ. Equations., 46 (2010), 1299–1308 | DOI | MR
[28] Kuramoto Y., Tsusuki T., “On the formation of the dissipative structures in reaction-diffusion systems”, Progr. Teor. Phys., 54:3 (2018), 687–699 | DOI
[29] Scott A., Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford Univ. Press, London, 2003 | MR
[30] Segal I., “Nonlinear semigroups”, Ann. Math., 78:2 (1963), 339–364 | DOI | MR
[31] Witham G., Linear and Nonlinear Waves, Wiley, New York, 1974 | MR