Bifurcations in a dynamic system modeling pedagogical impacts on a group of students with a negative informal leader
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 29-43
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a system of ordinary differential equations, which describes a model of the pedagogical impact on a group of students. The impact is expressed as the sum of a constant and a control parameter. We find equilibrium states of the system and determine the types of their bifurcations that arise when the control parameter changes. Also, we obtain coefficient conditions for the emergence of stable equilibrium states and the corresponding bifurcation values of the parameter.
Keywords:
differential equation, equilibrium state, control parameter, periodic solution.
Mots-clés : bifurcation
Mots-clés : bifurcation
@article{INTO_2022_216_a2,
author = {S. A. Belman and E. Yu. Liskina},
title = {Bifurcations in a dynamic system modeling pedagogical impacts on a group of students with a negative informal leader},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {29--43},
publisher = {mathdoc},
volume = {216},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a2/}
}
TY - JOUR AU - S. A. Belman AU - E. Yu. Liskina TI - Bifurcations in a dynamic system modeling pedagogical impacts on a group of students with a negative informal leader JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 29 EP - 43 VL - 216 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_216_a2/ LA - ru ID - INTO_2022_216_a2 ER -
%0 Journal Article %A S. A. Belman %A E. Yu. Liskina %T Bifurcations in a dynamic system modeling pedagogical impacts on a group of students with a negative informal leader %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 29-43 %V 216 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_216_a2/ %G ru %F INTO_2022_216_a2
S. A. Belman; E. Yu. Liskina. Bifurcations in a dynamic system modeling pedagogical impacts on a group of students with a negative informal leader. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 29-43. http://geodesic.mathdoc.fr/item/INTO_2022_216_a2/