Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III.~Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 133-152
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is the conclusion of the work on the integrability of general classes of homogeneous dynamical systems with variable dissipation on the tangent bundles of $n$-dimensional manifolds.
The first part of the paper is:
Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold// Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory. — 2022. — V. xxx. — P. xx–xx.
The second part of the paper is:
Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. II. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field// Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory. — 2022. — V. xxx. — P. xx–xx.
Keywords:
dynamical system, nonconservative field, integrability, transcendental first integral.
@article{INTO_2022_216_a13,
author = {M. V. Shamolin},
title = {Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. {III.~Equations} of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {133--152},
publisher = {mathdoc},
volume = {216},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a13/}
}
TY - JOUR AU - M. V. Shamolin TI - Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III.~Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 133 EP - 152 VL - 216 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_216_a13/ LA - ru ID - INTO_2022_216_a13 ER -
%0 Journal Article %A M. V. Shamolin %T Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III.~Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 133-152 %V 216 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_216_a13/ %G ru %F INTO_2022_216_a13
M. V. Shamolin. Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III.~Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 133-152. http://geodesic.mathdoc.fr/item/INTO_2022_216_a13/