Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_216_a13, author = {M. V. Shamolin}, title = {Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. {III.~Equations} of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {133--152}, publisher = {mathdoc}, volume = {216}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a13/} }
TY - JOUR AU - M. V. Shamolin TI - Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III.~Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 133 EP - 152 VL - 216 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_216_a13/ LA - ru ID - INTO_2022_216_a13 ER -
%0 Journal Article %A M. V. Shamolin %T Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III.~Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 133-152 %V 216 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_216_a13/ %G ru %F INTO_2022_216_a13
M. V. Shamolin. Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III.~Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 133-152. http://geodesic.mathdoc.fr/item/INTO_2022_216_a13/