Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III.~Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 133-152

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the conclusion of the work on the integrability of general classes of homogeneous dynamical systems with variable dissipation on the tangent bundles of $n$-dimensional manifolds. The first part of the paper is: Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold// Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory. — 2022. — V. xxx. — P. xx–xx. The second part of the paper is: Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. II. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field// Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory. — 2022. — V. xxx. — P. xx–xx.
Keywords: dynamical system, nonconservative field, integrability, transcendental first integral.
@article{INTO_2022_216_a13,
     author = {M. V. Shamolin},
     title = {Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. {III.~Equations} of motion on the tangent bundle of an $n$-dimensional manifold in a force field  with variable dissipation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {133--152},
     publisher = {mathdoc},
     volume = {216},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a13/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III.~Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field  with variable dissipation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 133
EP  - 152
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_216_a13/
LA  - ru
ID  - INTO_2022_216_a13
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III.~Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field  with variable dissipation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 133-152
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_216_a13/
%G ru
%F INTO_2022_216_a13
M. V. Shamolin. Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III.~Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field  with variable dissipation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 133-152. http://geodesic.mathdoc.fr/item/INTO_2022_216_a13/