On the isometry groups of foliated manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 124-132

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the isometry group $\mathrm{Iso}_{F}(M)$ of a foliated manifold with an $F$-compact-open topology. This topology depends on the foliation $F$ and coincides with the compact-open topology if $F$ is an $n$-dimensional foliation. If the codimension of the foliation is equal to $n$, then the convergence in this topology coincides with the pointwise convergence. Some properties of the group $\mathrm{Iso}_F(M)$ are proved.
Keywords: manifold, isometry of foliations, topological group, $F$-compact-open topology.
Mots-clés : foliation
@article{INTO_2022_216_a12,
     author = {A. S. Sharipov and G. M. Abdishukurova},
     title = {On the isometry groups of foliated manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {124--132},
     publisher = {mathdoc},
     volume = {216},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a12/}
}
TY  - JOUR
AU  - A. S. Sharipov
AU  - G. M. Abdishukurova
TI  - On the isometry groups of foliated manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 124
EP  - 132
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_216_a12/
LA  - ru
ID  - INTO_2022_216_a12
ER  - 
%0 Journal Article
%A A. S. Sharipov
%A G. M. Abdishukurova
%T On the isometry groups of foliated manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 124-132
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_216_a12/
%G ru
%F INTO_2022_216_a12
A. S. Sharipov; G. M. Abdishukurova. On the isometry groups of foliated manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 124-132. http://geodesic.mathdoc.fr/item/INTO_2022_216_a12/