On the existence and completeness of enumeration of three-dimensional $RR$-polyhedra
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 106-115

Voir la notice de l'article provenant de la source Math-Net.Ru

An $RR$-polyhedron is a closed convex polyhedron in $E^3$ whose set of faces can be divided into two nonempty disjoint class: the class of regular polygons of the same type and the class of faces that form stars of symmetric rhombic vertices. A theorem on the existence and completeness of enumeration of closed convex three-dimensional $RR$-polyhedra is proved.
Keywords: $RR$-polyhedron, star of a vertex, symmetric rhombic vertex.
@article{INTO_2022_216_a10,
     author = {V. I. Subbotin},
     title = {On the existence and completeness of enumeration of three-dimensional $RR$-polyhedra},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {106--115},
     publisher = {mathdoc},
     volume = {216},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_216_a10/}
}
TY  - JOUR
AU  - V. I. Subbotin
TI  - On the existence and completeness of enumeration of three-dimensional $RR$-polyhedra
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 106
EP  - 115
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_216_a10/
LA  - ru
ID  - INTO_2022_216_a10
ER  - 
%0 Journal Article
%A V. I. Subbotin
%T On the existence and completeness of enumeration of three-dimensional $RR$-polyhedra
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 106-115
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_216_a10/
%G ru
%F INTO_2022_216_a10
V. I. Subbotin. On the existence and completeness of enumeration of three-dimensional $RR$-polyhedra. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, geometry, differential equations, Tome 216 (2022), pp. 106-115. http://geodesic.mathdoc.fr/item/INTO_2022_216_a10/