Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_215_a8, author = {M. V. Shamolin}, title = {Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. {II.} {Equations} of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {81--94}, publisher = {mathdoc}, volume = {215}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a8/} }
TY - JOUR AU - M. V. Shamolin TI - Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. II. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 81 EP - 94 VL - 215 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_215_a8/ LA - ru ID - INTO_2022_215_a8 ER -
%0 Journal Article %A M. V. Shamolin %T Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. II. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 81-94 %V 215 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_215_a8/ %G ru %F INTO_2022_215_a8
M. V. Shamolin. Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. II. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 81-94. http://geodesic.mathdoc.fr/item/INTO_2022_215_a8/