Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. II. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 81-94

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the second part of the work on the integrability of general classes of homogeneous dynamical systems with variable dissipation on the tangent bundles of $n$-dimensional manifolds. The first part of the paper is: Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold// Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 214 (2022), pp. 82–106.
Keywords: dynamical system, nonconservative field, integrability, transcendental first integral.
@article{INTO_2022_215_a8,
     author = {M. V. Shamolin},
     title = {Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. {II.} {Equations} of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {215},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a8/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. II. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 81
EP  - 94
VL  - 215
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_215_a8/
LA  - ru
ID  - INTO_2022_215_a8
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. II. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 81-94
%V 215
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_215_a8/
%G ru
%F INTO_2022_215_a8
M. V. Shamolin. Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. II. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 81-94. http://geodesic.mathdoc.fr/item/INTO_2022_215_a8/