Beltrami theorem in Minkowski space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 73-80

Voir la notice de l'article provenant de la source Math-Net.Ru

E. Beltrami proved a theorem on the relationship of curvatures for families of surfaces of revolution in the three-dimensional Euclidean space, which implies that if some surface of revolution $M'$ orthogonally intersects all surfaces obtained from a surface of constant curvature $M$ by translations along the rotation axis, then the curvature of the surface $M'$ is also constant and differs from the curvature of the surface $M$ only in sign. In this paper, we obtain analogs of this theorem for surfaces of revolution in the three-dimensional Minkowski space.
Keywords: Minkowski space, surface of revolution, Lobachevsky plane, de Sitter plane, space of constant curvature, pseudosphere.
@article{INTO_2022_215_a7,
     author = {A. V. Kostin},
     title = {Beltrami theorem in {Minkowski} space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {73--80},
     publisher = {mathdoc},
     volume = {215},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a7/}
}
TY  - JOUR
AU  - A. V. Kostin
TI  - Beltrami theorem in Minkowski space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 73
EP  - 80
VL  - 215
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_215_a7/
LA  - ru
ID  - INTO_2022_215_a7
ER  - 
%0 Journal Article
%A A. V. Kostin
%T Beltrami theorem in Minkowski space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 73-80
%V 215
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_215_a7/
%G ru
%F INTO_2022_215_a7
A. V. Kostin. Beltrami theorem in Minkowski space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 73-80. http://geodesic.mathdoc.fr/item/INTO_2022_215_a7/