Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_215_a7, author = {A. V. Kostin}, title = {Beltrami theorem in {Minkowski} space}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {73--80}, publisher = {mathdoc}, volume = {215}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a7/} }
A. V. Kostin. Beltrami theorem in Minkowski space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 73-80. http://geodesic.mathdoc.fr/item/INTO_2022_215_a7/
[1] Kostin A. V., “Ob asimptoticheskikh liniyakh na psevdosfericheskikh poverkhnostyakh”, Vladikavkaz. mat. zh., 21:1 (2019), 16–26 | MR | Zbl
[2] Kostin A. V., “Evolyuty meridianov i asimptoticheskie na psevdosferakh”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 169 (2019), 24–31
[3] Kostin A. V., “O gelikoidakh Dini v prostranstve Minkovskogo”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 180 (2020), 50–57
[4] Miklyukov V. M., Klyachin A. A., Klyachin V. A., Maksimalnye poverkhnosti v prostranstve-vremeni Minkovskogo, Izd-vo VolGU, olgograd, 2011
[5] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969
[6] Shirokov P. A., “Interpretatsiya i metrika kvadratichnykh geometrii”, Izbrannye raboty po geometrii, Kazan, 1966, 15–179 | MR
[7] Barros M., Caballero M., Ortega M., “Rotational surfaces in ${\mathbb{L}^3}$ and solutions of the nonlinear sigma model”, Commun. Math. Phys., 290:2 (2009), 437–477 | DOI | MR | Zbl
[8] Beltrami E., “Intorno ad alcune proprietà delle superficie rivoluzione”, Ann. Mat. Pura Appl. Ser. I., VI (1864), 171–179
[9] Beltrami E., “Saggio di interpretrazione della geometria non-Euklidea”, Giorn. Mat., VI (1868), 284–322
[10] Blanusha D., “$C^\infty$-Isometric imbeddings of the hyperbolic plane and of cylinders with hyperbolic metric in spherical spaces”, Ann. Math. Pura Appl., 57 (1962), 321–337 | DOI | MR
[11] Blanusha D., “$C^\infty$-Isometric imbeddings of cylinders with hyperbolic metric in Euclidean 7-space”, Glas. Mat.-Fiz. Astron., 11:3-4 (1956), 243–246 | MR
[12] Hesse L. O., “Über ein Übertragungsprinzip”, J. Reine Angew. Math., 66 (1866), 15–21 | MR | Zbl
[13] Kostin A. V., “Some generalization of the shadow problem in the Lobachevsky space”, Ukr. Math. J., 73:1 (2021), 61–68 | DOI | MR | Zbl
[14] Lopez R., “Differential geometry of curves and surfaces in Lorentz–Minkowski space”, Int. Electron. J. Geom., 7:1 (2014), 44–107 | DOI | MR | Zbl
[15] Minding F., “Ueber die Biegung krummer Flächen”, J. Reine Angew. Math., 18 (1838), 365–368 | MR | Zbl
[16] Minding F., “Wie sich entscheiden lässt, ob zwei gegebene krumme Flächen auf einander abwickelbar sind oder nicht; nebst Bemerkungen über die Flächen von unveränderlichem Krümmungsmasse”, J. Reine Angew. Math., 19 (1839), 370–387 | MR | Zbl
[17] Minding F., “Beiträge zur Theorie der kürzerten Linien auf krummen Flächen”, J. Reine Angew. Math., 20 (1840), 323–327 | MR | Zbl