Beltrami theorem in Minkowski space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 73-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

E. Beltrami proved a theorem on the relationship of curvatures for families of surfaces of revolution in the three-dimensional Euclidean space, which implies that if some surface of revolution $M'$ orthogonally intersects all surfaces obtained from a surface of constant curvature $M$ by translations along the rotation axis, then the curvature of the surface $M'$ is also constant and differs from the curvature of the surface $M$ only in sign. In this paper, we obtain analogs of this theorem for surfaces of revolution in the three-dimensional Minkowski space.
Keywords: Minkowski space, surface of revolution, Lobachevsky plane, de Sitter plane, space of constant curvature, pseudosphere.
@article{INTO_2022_215_a7,
     author = {A. V. Kostin},
     title = {Beltrami theorem in {Minkowski} space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {73--80},
     publisher = {mathdoc},
     volume = {215},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a7/}
}
TY  - JOUR
AU  - A. V. Kostin
TI  - Beltrami theorem in Minkowski space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 73
EP  - 80
VL  - 215
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_215_a7/
LA  - ru
ID  - INTO_2022_215_a7
ER  - 
%0 Journal Article
%A A. V. Kostin
%T Beltrami theorem in Minkowski space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 73-80
%V 215
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_215_a7/
%G ru
%F INTO_2022_215_a7
A. V. Kostin. Beltrami theorem in Minkowski space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 73-80. http://geodesic.mathdoc.fr/item/INTO_2022_215_a7/

[1] Kostin A. V., “Ob asimptoticheskikh liniyakh na psevdosfericheskikh poverkhnostyakh”, Vladikavkaz. mat. zh., 21:1 (2019), 16–26 | MR | Zbl

[2] Kostin A. V., “Evolyuty meridianov i asimptoticheskie na psevdosferakh”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 169 (2019), 24–31

[3] Kostin A. V., “O gelikoidakh Dini v prostranstve Minkovskogo”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 180 (2020), 50–57

[4] Miklyukov V. M., Klyachin A. A., Klyachin V. A., Maksimalnye poverkhnosti v prostranstve-vremeni Minkovskogo, Izd-vo VolGU, olgograd, 2011

[5] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969

[6] Shirokov P. A., “Interpretatsiya i metrika kvadratichnykh geometrii”, Izbrannye raboty po geometrii, Kazan, 1966, 15–179 | MR

[7] Barros M., Caballero M., Ortega M., “Rotational surfaces in ${\mathbb{L}^3}$ and solutions of the nonlinear sigma model”, Commun. Math. Phys., 290:2 (2009), 437–477 | DOI | MR | Zbl

[8] Beltrami E., “Intorno ad alcune proprietà delle superficie rivoluzione”, Ann. Mat. Pura Appl. Ser. I., VI (1864), 171–179

[9] Beltrami E., “Saggio di interpretrazione della geometria non-Euklidea”, Giorn. Mat., VI (1868), 284–322

[10] Blanusha D., “$C^\infty$-Isometric imbeddings of the hyperbolic plane and of cylinders with hyperbolic metric in spherical spaces”, Ann. Math. Pura Appl., 57 (1962), 321–337 | DOI | MR

[11] Blanusha D., “$C^\infty$-Isometric imbeddings of cylinders with hyperbolic metric in Euclidean 7-space”, Glas. Mat.-Fiz. Astron., 11:3-4 (1956), 243–246 | MR

[12] Hesse L. O., “Über ein Übertragungsprinzip”, J. Reine Angew. Math., 66 (1866), 15–21 | MR | Zbl

[13] Kostin A. V., “Some generalization of the shadow problem in the Lobachevsky space”, Ukr. Math. J., 73:1 (2021), 61–68 | DOI | MR | Zbl

[14] Lopez R., “Differential geometry of curves and surfaces in Lorentz–Minkowski space”, Int. Electron. J. Geom., 7:1 (2014), 44–107 | DOI | MR | Zbl

[15] Minding F., “Ueber die Biegung krummer Flächen”, J. Reine Angew. Math., 18 (1838), 365–368 | MR | Zbl

[16] Minding F., “Wie sich entscheiden lässt, ob zwei gegebene krumme Flächen auf einander abwickelbar sind oder nicht; nebst Bemerkungen über die Flächen von unveränderlichem Krümmungsmasse”, J. Reine Angew. Math., 19 (1839), 370–387 | MR | Zbl

[17] Minding F., “Beiträge zur Theorie der kürzerten Linien auf krummen Flächen”, J. Reine Angew. Math., 20 (1840), 323–327 | MR | Zbl