Asymptotical enumeration of some abeled geodetic graphs
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 58-67
Voir la notice de l'article provenant de la source Math-Net.Ru
We asymptotically enumerate labeled geodetic $k$-cyclic cacti and obtain asymptotics for the numbers of labeled connected geodetic unicyclic, bicyclic, and tricyclic $n$-vertex graphs. We prove that under the uniform probability distribution, the probabilities that a random labeled connected unicyclic, bicyclic, or tricyclic graph is a geodetic graph are asymptotically equal to $1/2$, $3/20$, and $1/30$, respectively. In addition, we prove that almost all labeled connected geodetic tricyclic graphs are cacti.
Keywords:
enumeration, labeled graph, geodetic graph, $k$-cyclic graph, asymptotics, random graph.
Mots-clés : cactus
Mots-clés : cactus
@article{INTO_2022_215_a5,
author = {V. A. Voblyi},
title = {Asymptotical enumeration of some abeled geodetic graphs},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {58--67},
publisher = {mathdoc},
volume = {215},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a5/}
}
TY - JOUR AU - V. A. Voblyi TI - Asymptotical enumeration of some abeled geodetic graphs JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 58 EP - 67 VL - 215 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_215_a5/ LA - ru ID - INTO_2022_215_a5 ER -
V. A. Voblyi. Asymptotical enumeration of some abeled geodetic graphs. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 58-67. http://geodesic.mathdoc.fr/item/INTO_2022_215_a5/