Asymptotical enumeration of some abeled geodetic graphs
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 58-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We asymptotically enumerate labeled geodetic $k$-cyclic cacti and obtain asymptotics for the numbers of labeled connected geodetic unicyclic, bicyclic, and tricyclic $n$-vertex graphs. We prove that under the uniform probability distribution, the probabilities that a random labeled connected unicyclic, bicyclic, or tricyclic graph is a geodetic graph are asymptotically equal to $1/2$, $3/20$, and $1/30$, respectively. In addition, we prove that almost all labeled connected geodetic tricyclic graphs are cacti.
Keywords: enumeration, labeled graph, geodetic graph, $k$-cyclic graph, asymptotics, random graph.
Mots-clés : cactus
@article{INTO_2022_215_a5,
     author = {V. A. Voblyi},
     title = {Asymptotical enumeration of some abeled geodetic graphs},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {58--67},
     publisher = {mathdoc},
     volume = {215},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a5/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - Asymptotical enumeration of some abeled geodetic graphs
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 58
EP  - 67
VL  - 215
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_215_a5/
LA  - ru
ID  - INTO_2022_215_a5
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T Asymptotical enumeration of some abeled geodetic graphs
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 58-67
%V 215
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_215_a5/
%G ru
%F INTO_2022_215_a5
V. A. Voblyi. Asymptotical enumeration of some abeled geodetic graphs. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 58-67. http://geodesic.mathdoc.fr/item/INTO_2022_215_a5/

[1] Voblyi V. A., “Perechislenie pomechennykh geodezicheskikh planarnykh grafov”, Mat. zametki., 97:3 (2015), 336–341 | MR | Zbl

[2] Voblyi V. A., “Perechislenie pomechennykh geodezicheskikh grafov s malym tsiklomaticheskim chislom”, Mat. zametki., 101:5 (2017), 684–689 | MR | Zbl

[3] Voblyi V. A., “Asimptoticheskoe perechislenie pomechennykh posledovatelno-parallelnykh tetratsiklicheskikh grafov”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obzory., 187 (2020), 31–35

[4] Voblyi V. A., “Perechislenie pomechennykh posledovatelno-parallelnykh tritsiklicheskikh grafov”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obzory., 177 (2020), 132–136

[5] Voblyi V. A., “O perechislenii pomechennykh svyaznykh grafov s zadannymi chislami vershin i reber”, Diskr. anal. issl. oper., 23:2 (2016), 5–20 | Zbl

[6] Voblyi V. A., “Vtoroe sootnoshenie Riddela i sledstviya iz nego”, Diskr. anal. issl. oper., 26:1 (2019), 20–32 | MR | Zbl

[7] Voblyi V. A., “Ob asimptoticheskoe perechislenii pomechennykh posledovatelno-parallelnykh $k$-tsiklicheskikh grafov”, Diskr. anal. issl. oper., 29:4 (2022), 5–14\

[8] Voblyi V. A., Meleshko A. K., “Perechislenie pomechennykh geodezicheskikh $k$-tsiklicheskikh kaktusov”, Mat. XVIII Mezhdunar. konf. «Problemy teoreticheskoi kibernetiki», Penza, 2017, 56–57

[9] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR

[10] Kudryavtsev L. D., Kratkii kurs matematicheskogo analiza, Nauka, M., 1989

[11] Riordan Dzh., Kombinatornye tozhdestva, M., 1982 | MR

[12] Kharari F., Teoriya grafov, Mir, M., 1973

[13] Kharari F., Palmer E., Perechislenie grafov, Mir, M., 1977

[14] Frasser C. E., “$k$-Geodetic graphs and their application to the topological design of computer networks”, Proc. Argentinian Workshop on Theoretical Computer Science, 28 JAIIO-WAIT'99, 1999, 187–203

[15] Mc Diarmid C., Scott A., “Random graphs from a block stable class”, Eur. J. Combin., 58 (2016), 96–106 | DOI | MR

[16] NIST Handbook of Mathematical Functions, Cambridge Univ. Press, New York, 2010 | Zbl

[17] Stemple J. G., Watkins M. E., “On planar geodetic graphs”, J. Combin. Theory., 4 (1968), 101–117 | DOI | MR | Zbl

[18] Temme N. M., Veling E. J. M., Asymptotic expansions of Kummer hypergeometric functions with three parameters $a$, $b$ and $z$, arXiv: 2202.12857v3 [math.CA] | MR

[19] Wright E. M., “The number of connected sparsely edged graphs”, J. Graph Theory., 1:4 (1977), 317–330 | DOI | MR | Zbl