Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_215_a5, author = {V. A. Voblyi}, title = {Asymptotical enumeration of some abeled geodetic graphs}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {58--67}, publisher = {mathdoc}, volume = {215}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a5/} }
TY - JOUR AU - V. A. Voblyi TI - Asymptotical enumeration of some abeled geodetic graphs JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 58 EP - 67 VL - 215 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_215_a5/ LA - ru ID - INTO_2022_215_a5 ER -
V. A. Voblyi. Asymptotical enumeration of some abeled geodetic graphs. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 58-67. http://geodesic.mathdoc.fr/item/INTO_2022_215_a5/
[1] Voblyi V. A., “Perechislenie pomechennykh geodezicheskikh planarnykh grafov”, Mat. zametki., 97:3 (2015), 336–341 | MR | Zbl
[2] Voblyi V. A., “Perechislenie pomechennykh geodezicheskikh grafov s malym tsiklomaticheskim chislom”, Mat. zametki., 101:5 (2017), 684–689 | MR | Zbl
[3] Voblyi V. A., “Asimptoticheskoe perechislenie pomechennykh posledovatelno-parallelnykh tetratsiklicheskikh grafov”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obzory., 187 (2020), 31–35
[4] Voblyi V. A., “Perechislenie pomechennykh posledovatelno-parallelnykh tritsiklicheskikh grafov”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obzory., 177 (2020), 132–136
[5] Voblyi V. A., “O perechislenii pomechennykh svyaznykh grafov s zadannymi chislami vershin i reber”, Diskr. anal. issl. oper., 23:2 (2016), 5–20 | Zbl
[6] Voblyi V. A., “Vtoroe sootnoshenie Riddela i sledstviya iz nego”, Diskr. anal. issl. oper., 26:1 (2019), 20–32 | MR | Zbl
[7] Voblyi V. A., “Ob asimptoticheskoe perechislenii pomechennykh posledovatelno-parallelnykh $k$-tsiklicheskikh grafov”, Diskr. anal. issl. oper., 29:4 (2022), 5–14\
[8] Voblyi V. A., Meleshko A. K., “Perechislenie pomechennykh geodezicheskikh $k$-tsiklicheskikh kaktusov”, Mat. XVIII Mezhdunar. konf. «Problemy teoreticheskoi kibernetiki», Penza, 2017, 56–57
[9] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR
[10] Kudryavtsev L. D., Kratkii kurs matematicheskogo analiza, Nauka, M., 1989
[11] Riordan Dzh., Kombinatornye tozhdestva, M., 1982 | MR
[12] Kharari F., Teoriya grafov, Mir, M., 1973
[13] Kharari F., Palmer E., Perechislenie grafov, Mir, M., 1977
[14] Frasser C. E., “$k$-Geodetic graphs and their application to the topological design of computer networks”, Proc. Argentinian Workshop on Theoretical Computer Science, 28 JAIIO-WAIT'99, 1999, 187–203
[15] Mc Diarmid C., Scott A., “Random graphs from a block stable class”, Eur. J. Combin., 58 (2016), 96–106 | DOI | MR
[16] NIST Handbook of Mathematical Functions, Cambridge Univ. Press, New York, 2010 | Zbl
[17] Stemple J. G., Watkins M. E., “On planar geodetic graphs”, J. Combin. Theory., 4 (1968), 101–117 | DOI | MR | Zbl
[18] Temme N. M., Veling E. J. M., Asymptotic expansions of Kummer hypergeometric functions with three parameters $a$, $b$ and $z$, arXiv: 2202.12857v3 [math.CA] | MR
[19] Wright E. M., “The number of connected sparsely edged graphs”, J. Graph Theory., 1:4 (1977), 317–330 | DOI | MR | Zbl