Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_215_a3, author = {L. M. Berlin and A. A. Galyaev and P. V. Lysenko}, title = {Geometric approach to the problem of optimal scalar control of two nonsynchronous oscillators}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {40--51}, publisher = {mathdoc}, volume = {215}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a3/} }
TY - JOUR AU - L. M. Berlin AU - A. A. Galyaev AU - P. V. Lysenko TI - Geometric approach to the problem of optimal scalar control of two nonsynchronous oscillators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 40 EP - 51 VL - 215 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_215_a3/ LA - ru ID - INTO_2022_215_a3 ER -
%0 Journal Article %A L. M. Berlin %A A. A. Galyaev %A P. V. Lysenko %T Geometric approach to the problem of optimal scalar control of two nonsynchronous oscillators %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 40-51 %V 215 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_215_a3/ %G ru %F INTO_2022_215_a3
L. M. Berlin; A. A. Galyaev; P. V. Lysenko. Geometric approach to the problem of optimal scalar control of two nonsynchronous oscillators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 40-51. http://geodesic.mathdoc.fr/item/INTO_2022_215_a3/
[1] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005
[2] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969
[3] Galyaev A. A., “Skalyarnoe upravlenie gruppoi nesinkhronnykh ostsillyatorov”, Avtomat. telemekh., 9 (2016), 3–18 | MR | Zbl
[4] Galyaev A. A., Lysenko P. V., “O zadache optimalnogo skalyarnogo upravleniya dvumya nesinkhronnymi ostsillyatorami”, Tr. 59 Vseross. nauch. konf. MFTI, MFTI, Dolgoprudnyi, 2016, 1–13
[5] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961 | MR
[6] Sachkov Yu. L., Vvedenie v geometricheskuyu teoriyu upravleniya, LENAND, M., 2021
[7] Chernousko F. L., Akulenko L. D., Sokolov B. N., Upravlenie kolebaniyami, Nauka, M., 1980
[8] Benzaid Z., “Global null controllability of perturbed linear systems with constrained controls”, J. Math. Anal. Appl., 136 (1988), 201–216 | DOI | MR | Zbl
[9] Jakubczyk B., Introduction to Geometric Nonlinear Control. Controllability of Lie Bracket, Warsaw, 2001 | MR
[10] Sussmann H. J., Jurdjevic V., “Controllability of nonlinear systems”, J. Differ. Equations., 12 (1972), 95–116 | DOI | MR | Zbl