Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_215_a0, author = {D. V. Alekseevskii}, title = {Special uniform {Vinberg} cones and their applications}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--17}, publisher = {mathdoc}, volume = {215}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a0/} }
TY - JOUR AU - D. V. Alekseevskii TI - Special uniform Vinberg cones and their applications JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 3 EP - 17 VL - 215 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_215_a0/ LA - ru ID - INTO_2022_215_a0 ER -
D. V. Alekseevskii. Special uniform Vinberg cones and their applications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 3-17. http://geodesic.mathdoc.fr/item/INTO_2022_215_a0/
[1] Vinberg E. B., “Teoriya odnorodnykh vypuklykh konusov”, Tr. Mosk. mat. o-va., 12 (1963), 303–358 | Zbl
[2] Kulbak S., Teoriya informatsii i statistika, Nauka, M., 1967
[3] Chentsov N. N., Izbrannye trudy, In-t prikl. mat. im. M. V. Keldysha RAN, M., 2002
[4] Alekseevskii D. V., “Klassifikatsiya kvaternionnykh prostranstv s tranzitivnoi razreshimoi gruppoi dvizhenii”, Izv. AN SSSR. Ser. mat., 39:2 (1975), 315–362 | MR | Zbl
[5] Alekseevsky D. V., Cortes V., “Classification of $N$-(super)-extended Poincare algebras and bilinear invariants of the spinor representation of Spin$(p,q)$”, Commun. Math. Phys., 183:3 (1997), 477–510 | DOI | MR | Zbl
[6] Alekseevsky D. V., Cortes V., “Geometric construction of the $r$-map: from affine special real to special Kähler manifolds”, Commun. Math. Phys., 291:2 (2009), 579–590 | DOI | MR | Zbl
[7] Alekseevsky D. V., Cortes V., Mohaupt T., “Conification of Kähler and hyper-Kähler manifolds”, Commun. Math. Phys., 324:2 (2013), 637–655 | DOI | MR | Zbl
[8] Alekseevsky D. V., Cortes V., Dyckmanns M., Mohaupt T.,, “Quaternionic Kähler metrics associated with special Kähler manifolds”, J. Geom. Phys., 92 (2015), 271–287 | DOI | MR | Zbl
[9] Amari S., Information Geometry and Its Applications, Springer, 2016 | MR | Zbl
[10] Andreson S. A., Wojnar G. G., “Wishard distributions on homogeneous cones”, J. Theor. Probab., 17 (2004), 781–818 | DOI | MR
[11] Atiah M. F., Bott R., Shapiro A., “Clifford modules”, Topology., 3 (1964), 3–38 | DOI | MR
[12] Boyd S., Vandenberghe L., Convex Optimization, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[13] Cheng C.-Y., Yau S. T., “Complete affine hypersurfaces. I. The completeness of affine metrics”, Commun. Pure Appl. Math., 34 (1986), 839–866 | DOI | MR
[14] Cortés V., “Alekseevskian spaces”, Differ. Geom. Appl., 6:2 (1996), 129–168 | DOI | MR | Zbl
[15] Cortés V., “Homogeneous special geometry”, Transform. Groups., 1:4 (1996), 337–373 | DOI | MR | Zbl
[16] Cortés V., Dyckmanns M., Jüngling M., Lindemann D., A class of cubic hypersurfaces and quaternionic Kahler manifolds of co-homogeneity one, arXiv: 1701.07882 [math.DG] | MR
[17] de Wit B., Van Proeyen A., “Special geometry, cubic polynomials and homogeneous quaternionic spaces”, Commun. Math. Phys., 149 (1992), 307–333 | DOI | MR | Zbl
[18] [F-A] Felice D., Ay N., Divergence functions in information geometry, arXiv: 1903.02379 [math.DG] | MR
[19] Felice D., Mancini S., Ay N., Canonical divergence for measuring classical and quantum complexity, arXiv: ArXiv 1903.09797, p17. 1903.09797 [math.ph] | MR
[20] Forrester P. J., “Octonions in random matrix theory”, Proc. Roy. Soc. A. Math. Phys. Eng. Sci., A473 (2017), 2016080 | MR
[21] Freedman D. Z., van Proeyen A., Supergravity, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl
[22] Ishi H., “Homogeneous cones and their applications to statistics”, Modern Methods of Multivariate Statistics, Hermann, Paris, 2014, 135–154
[23] Lovrić M., Min-Oo M., Ruh E. A., “Multivariate normal distributions parametrized as a Riemannian symmetric space”, J. Multivar. Anal., 74:1 (2000), 36–48 | DOI | MR | Zbl
[24] Nielsen F., Garcia V., Statistical exponential families: A digest with flash cards, arXiv: 0911.4863v2 [cs.LG]
[25] Ohara A., “Geodesics for dual connections and means on symmetric cone”, Integral Equations Operator Theory., 50 (2004), 537–548 | DOI | MR | Zbl