Special uniform Vinberg cones and their applications
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present basic facts of Vinberg's theory of homogeneous convex cones, primarily the special Vinberg cones associated with Clifford modules, and their generalization. Applications of the cone theory to differential geometry, physics (including supergravity), information geometry, convex programming, and differential equations are briefly discussed.
Keywords: convex cone, Vinberg cone, Clifford module, differential geometry.
@article{INTO_2022_215_a0,
     author = {D. V. Alekseevskii},
     title = {Special uniform {Vinberg} cones and their applications},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {215},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_215_a0/}
}
TY  - JOUR
AU  - D. V. Alekseevskii
TI  - Special uniform Vinberg cones and their applications
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 3
EP  - 17
VL  - 215
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_215_a0/
LA  - ru
ID  - INTO_2022_215_a0
ER  - 
%0 Journal Article
%A D. V. Alekseevskii
%T Special uniform Vinberg cones and their applications
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 3-17
%V 215
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_215_a0/
%G ru
%F INTO_2022_215_a0
D. V. Alekseevskii. Special uniform Vinberg cones and their applications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 215 (2022), pp. 3-17. http://geodesic.mathdoc.fr/item/INTO_2022_215_a0/

[1] Vinberg E. B., “Teoriya odnorodnykh vypuklykh konusov”, Tr. Mosk. mat. o-va., 12 (1963), 303–358 | Zbl

[2] Kulbak S., Teoriya informatsii i statistika, Nauka, M., 1967

[3] Chentsov N. N., Izbrannye trudy, In-t prikl. mat. im. M. V. Keldysha RAN, M., 2002

[4] Alekseevskii D. V., “Klassifikatsiya kvaternionnykh prostranstv s tranzitivnoi razreshimoi gruppoi dvizhenii”, Izv. AN SSSR. Ser. mat., 39:2 (1975), 315–362 | MR | Zbl

[5] Alekseevsky D. V., Cortes V., “Classification of $N$-(super)-extended Poincare algebras and bilinear invariants of the spinor representation of Spin$(p,q)$”, Commun. Math. Phys., 183:3 (1997), 477–510 | DOI | MR | Zbl

[6] Alekseevsky D. V., Cortes V., “Geometric construction of the $r$-map: from affine special real to special Kähler manifolds”, Commun. Math. Phys., 291:2 (2009), 579–590 | DOI | MR | Zbl

[7] Alekseevsky D. V., Cortes V., Mohaupt T., “Conification of Kähler and hyper-Kähler manifolds”, Commun. Math. Phys., 324:2 (2013), 637–655 | DOI | MR | Zbl

[8] Alekseevsky D. V., Cortes V., Dyckmanns M., Mohaupt T.,, “Quaternionic Kähler metrics associated with special Kähler manifolds”, J. Geom. Phys., 92 (2015), 271–287 | DOI | MR | Zbl

[9] Amari S., Information Geometry and Its Applications, Springer, 2016 | MR | Zbl

[10] Andreson S. A., Wojnar G. G., “Wishard distributions on homogeneous cones”, J. Theor. Probab., 17 (2004), 781–818 | DOI | MR

[11] Atiah M. F., Bott R., Shapiro A., “Clifford modules”, Topology., 3 (1964), 3–38 | DOI | MR

[12] Boyd S., Vandenberghe L., Convex Optimization, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[13] Cheng C.-Y., Yau S. T., “Complete affine hypersurfaces. I. The completeness of affine metrics”, Commun. Pure Appl. Math., 34 (1986), 839–866 | DOI | MR

[14] Cortés V., “Alekseevskian spaces”, Differ. Geom. Appl., 6:2 (1996), 129–168 | DOI | MR | Zbl

[15] Cortés V., “Homogeneous special geometry”, Transform. Groups., 1:4 (1996), 337–373 | DOI | MR | Zbl

[16] Cortés V., Dyckmanns M., Jüngling M., Lindemann D., A class of cubic hypersurfaces and quaternionic Kahler manifolds of co-homogeneity one, arXiv: 1701.07882 [math.DG] | MR

[17] de Wit B., Van Proeyen A., “Special geometry, cubic polynomials and homogeneous quaternionic spaces”, Commun. Math. Phys., 149 (1992), 307–333 | DOI | MR | Zbl

[18] [F-A] Felice D., Ay N., Divergence functions in information geometry, arXiv: 1903.02379 [math.DG] | MR

[19] Felice D., Mancini S., Ay N., Canonical divergence for measuring classical and quantum complexity, arXiv: ArXiv 1903.09797, p17. 1903.09797 [math.ph] | MR

[20] Forrester P. J., “Octonions in random matrix theory”, Proc. Roy. Soc. A. Math. Phys. Eng. Sci., A473 (2017), 2016080 | MR

[21] Freedman D. Z., van Proeyen A., Supergravity, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl

[22] Ishi H., “Homogeneous cones and their applications to statistics”, Modern Methods of Multivariate Statistics, Hermann, Paris, 2014, 135–154

[23] Lovrić M., Min-Oo M., Ruh E. A., “Multivariate normal distributions parametrized as a Riemannian symmetric space”, J. Multivar. Anal., 74:1 (2000), 36–48 | DOI | MR | Zbl

[24] Nielsen F., Garcia V., Statistical exponential families: A digest with flash cards, arXiv: 0911.4863v2 [cs.LG]

[25] Ohara A., “Geodesics for dual connections and means on symmetric cone”, Integral Equations Operator Theory., 50 (2004), 537–548 | DOI | MR | Zbl