Combinatorial properties of flat sections of the generalized Pascal's pyramid and construction of navigation routes
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 214 (2022), pp. 53-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes the methods of the mathematical apparatus of hierarchical structures. The definition of the generalized Pascal pyramid is given and the sums of the elements of its flat sections are considered. Recurrence relations that these sums satisfy, as well as enumerative interpretations of the combinatorial objects under study are shown. Combinatorial paths on integer lattices and the use of recurrence relations to estimate the number of deviations of the trajectory of an unmanned aerial vehicle from a given motion vector are described.
Keywords: combinatorial analysis, generalized Pascal's pyramid, recurrent property, integer lattice, trajectory.
Mots-clés : Pascal's triangle
@article{INTO_2022_214_a5,
     author = {O. V. Kuz'min and B. A. Starkov},
     title = {Combinatorial properties of flat sections of the generalized {Pascal's} pyramid and construction of navigation routes},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {53--59},
     publisher = {mathdoc},
     volume = {214},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_214_a5/}
}
TY  - JOUR
AU  - O. V. Kuz'min
AU  - B. A. Starkov
TI  - Combinatorial properties of flat sections of the generalized Pascal's pyramid and construction of navigation routes
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 53
EP  - 59
VL  - 214
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_214_a5/
LA  - ru
ID  - INTO_2022_214_a5
ER  - 
%0 Journal Article
%A O. V. Kuz'min
%A B. A. Starkov
%T Combinatorial properties of flat sections of the generalized Pascal's pyramid and construction of navigation routes
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 53-59
%V 214
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_214_a5/
%G ru
%F INTO_2022_214_a5
O. V. Kuz'min; B. A. Starkov. Combinatorial properties of flat sections of the generalized Pascal's pyramid and construction of navigation routes. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Geometry, and Combinatorics, Tome 214 (2022), pp. 53-59. http://geodesic.mathdoc.fr/item/INTO_2022_214_a5/

[1] Aigner M., Kombinatornaya teoriya, Mir, M., 1982

[2] Bondarenko L. N., “Modelirovanie kombinatornykh posledovatelnostei”, Obrazovatelnye resursy i tekhnologii., 2:27 (2019), 64–73

[3] Dokin V. N., Zhukov V. D., Kolokolnikova N. A., Kuzmin O. V., Platonov M. L., Kombinatornye chisla i polinomy v modelyakh diskretnykh raspredelenii, Izd-vo IGU, Irkutsk, 1990 | MR

[4] Korytov M. S., “Dekompozitsiya obobschennykh koordinat pri reshenii zadach optimizatsii traektorii peremescheniya gruza”, Vestn. MADI., 3:22 (2010), 32–35

[5] Kuzmin O. V., Obobschennye piramidy Paskalya i ikh prilozheniya, Nauka, Novosibirsk, 2000

[6] Kuzmin O. V., Atalyan A. V., “Derevya prinyatiya reshenii v zadachakh diagnostiki i prognozirovaniya”, Prikladnye zadachi diskretnogo analiza, Izd-vo IGU, 2019, 64–79

[7] Kuzmin O. V., Kedrin V. S., Singulyarnoe razlozhenie v modelyakh diskretnykh posledovatelnostei, Izd-vo IGU, Irkutsk, 2014

[8] Platonov M. L., Kombinatornye chisla klassa otobrazhenii i ikh prilozheniya, Nauka, M., 1979 | MR

[9] Reingold E., Nivergelt Yu., Deo N., Kombinatornye algoritmy. Teoriya i praktika, Mir, M., 1980 | MR

[10] Scherbakov V. S., Korytov M. S., “Algoritm poiska optimalnoi traektorii peremescheniya gruza v prostranstve s prepyatstviyami s uchetom uglovoi orientatsii na osnove geneticheskogo podkhoda”, Vestn. Irkut. gos. tekhn. un-ta., 2:49 (2011), 14–20

[11] Balagura A. A., Kuzmin O. V., “Generalised Pascal pyramids and their reciprocals”, Discr. Math. Appl., 17:6 (2007), 619–628 | MR | Zbl

[12] Breiman L., Friedman J., Olshen R., Stone C., Classification and Regression Trees, Wadsworth, Belmont, CA, 1984 | MR | Zbl

[13] Hovland C. I., “Computer simulation of thinking”, Am. Psychologist., 15:11 (1960), 687–693 | DOI

[14] Hunt E. B., Marin J., Stone P. J., Experiments in Induction, Academic Press, New York, 1966 | MR

[15] Kuzmin O. V., Balagura A. A., Kuzmina V. V., Khudonogov I. A., “Partially ordered sets and combinatory objects of the pyramidal structure”, Adv. Appl. Discr. Math., 20:2 (2019), 229–236

[16] Kuzmin O. V., Seregina M. V., “Plane sections of the generalised Pascal pyramid and their interpretations”, Discr. Math. Appl., 20:4 (2010), 377–389 | MR | Zbl

[17] Kuzmin O. V., Starkov B. A., “Application of hierarchical structures based on binary matrices with the generalized arithmetic of Pascal's triangle in route building problems”, J. Phys. Conf. Ser., 1847 (2021), 012030 | DOI

[18] Quinlan J. R., “Induction of decision trees”, Machine Learning., 1:1 (1986), 81–106 | MR

[19] Quinlan J. R., Programs for Machine Learning, Morgan Kaufmann, Waltham, 1993 | MR

[20] Stanley R., Enumerated Combinatorics. Vol. 1, Cambridge Univ. Press, 1997 | MR