Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 54-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a reaction-diffusion system with a general nonlinearity with cylindrical or spherical symmetry. For this system, we find a solution of the diffusion-wave type propagating over a zero background with a finite velocity. The solution is constructed as a Taylor series with recurrent coefficients whose convergence is proved by the majorant method and the Cauchy–Kovalevskaya theorem. The research is supplemented by numerical calculations based on the expansion in radial basis functions. This paper continues a series of our publications devoted to the study of wave-type solutions in the class of analytical functions.
Mots-clés : reaction-diffusion system, diffusion wave
Keywords: power series, majorant method, radial basis functions, computational experiment.
@article{INTO_2022_213_a4,
     author = {A. L. Kazakov and P. A. Kuznetsov and L. F. Spevak},
     title = {Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {54--62},
     publisher = {mathdoc},
     volume = {213},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a4/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - P. A. Kuznetsov
AU  - L. F. Spevak
TI  - Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 54
EP  - 62
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_213_a4/
LA  - ru
ID  - INTO_2022_213_a4
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A P. A. Kuznetsov
%A L. F. Spevak
%T Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 54-62
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_213_a4/
%G ru
%F INTO_2022_213_a4
A. L. Kazakov; P. A. Kuznetsov; L. F. Spevak. Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 54-62. http://geodesic.mathdoc.fr/item/INTO_2022_213_a4/

[1] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 1966

[2] Kazakov A. L., “O tochnykh resheniyakh kraevoi zadachi o dvizhenii teplovoi volny dlya uravneniya nelineinoi teploprovodnosti”, Sib. elektron. mat. izv., 16 (2019), 1057–1068 | Zbl

[3] Kazakov A. L., Kuznetsov P. A., “Ob analiticheskikh resheniyakh odnoi spetsialnoi kraevoi zadachi dlya nelineinogo uravneniya teploprovodnosti v polyarnykh koordinatakh”, Sib. zh. industr. mat., 21:2(74) (2018), 56–65 | Zbl

[4] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Postroenie reshenii kraevoi zadachi s vyrozhdeniem dlya nelineinoi parabolicheskoi sistemy”, Sib. zh. industr. mat., 24:4 (2021), 1–13

[5] Kazakov A. L., Spevak L. F., “Tochnye i priblizhennye resheniya vyrozhdayuscheisya sistemy reaktsiya-diffuziya”, Prikl. mekh. tekhn. fiz., 62:4 (2021), 169–180 | Zbl

[6] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[7] Sidorov A. F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001 | MR

[8] Cherniha R., Davydovych V., “Nonlinear reaction-diffusion systems with a non-constant diffusivity: Conditional symmetries in no-go case”, Appl. Math. Comput., 268 (2015), 23–34 | DOI | MR | Zbl

[9] Colombo E. H., Anteneodo C., “Nonlinear population dynamics in a bounded habitat”, J. Theor. Biology., 446 (2018), 11–18 | DOI | MR | Zbl

[10] Ding J., “Blow-up problem of quasilinear weakly coupled reaction-diffusion systems with Neumann boundary conditions”, J. Math. Anal. Appl., 502 (2021), 125283 | DOI | MR | Zbl

[11] Filimonov M. Yu., “Representation of solutions of boundary-value problems for nonlinear evolution equations by special series with recurrently caculated coefficients”, J. Phys. Conf. Ser., 2019

[12] Filimonov M. Yu., Korzunin L. G., Sidorov A. F., “Approximate methods for solving nonlinear initial boundary-value problems based on special construction of series”, Russ. J. Numer. Anal. Math. Model., 8:2 (1993), 101–125 | DOI | MR | Zbl

[13] Fotache A. R., Muratori M., “Smoothing effects for the filtration equation with different powers”, J. Differ. Equations., 263 (2017), 3291–3326 | DOI | MR | Zbl

[14] Gambino G., Lombardo M. C., Sammartino M., Sciacca V., “Turing pattern formation in the Brusselator system with nonlinear diffusion”, Phys. Rev. E., 88 (2013), 042925 | DOI

[15] Kazakov A. L., Kuznetsov P. A., “Analytical diffusion wave-type solutions to a nonlinear parabolic system with cylindrical and spherical symmetry”, Izv. Irkut. gos. un-ta. Ser. Mat., 37 (2021), 31–46 | MR | Zbl

[16] Kazakov A. L., Kuznetsov P. A., Lempert A. A., “Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type”, Symmetry., 12:6 (2020), 999 | DOI | MR

[17] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Analytical and numerical construction of heat wave type solutions to the nonlinear heat equation with a source”, J. Math. Sci., 239:2 (2019), 111–122 | DOI | MR | Zbl

[18] Kazakov A. L., Spevak L. F., “An analytical and numerical study of a nonlinear parabolic equation with degeneration for the cases of circular and spherical symmetry”, Appl. Math. Model., 40:2 (2016), 1333–1343 | DOI | MR | Zbl

[19] Kumar N., Horsthemke W., “Turing bifurcation in a reaction-diffusion system with density-dependent dispersal”, Phys. A., 389 (2010), 1812–1818 | DOI

[20] Murray J., Mathematical Biology: I. An Introduction, Springer, New York, 2002 | MR

[21] Stepanova I. V., “Group analysis of variable coefficients heat and mass transfer equations with power nonlinearity of thermal diffusivity”, Appl. Math. Comput., 343 (2019), 57–66 | DOI | MR | Zbl

[22] Vazquez J. L., The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007 | MR