Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_213_a4, author = {A. L. Kazakov and P. A. Kuznetsov and L. F. Spevak}, title = {Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {54--62}, publisher = {mathdoc}, volume = {213}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a4/} }
TY - JOUR AU - A. L. Kazakov AU - P. A. Kuznetsov AU - L. F. Spevak TI - Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 54 EP - 62 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_213_a4/ LA - ru ID - INTO_2022_213_a4 ER -
%0 Journal Article %A A. L. Kazakov %A P. A. Kuznetsov %A L. F. Spevak %T Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 54-62 %V 213 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_213_a4/ %G ru %F INTO_2022_213_a4
A. L. Kazakov; P. A. Kuznetsov; L. F. Spevak. Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 54-62. http://geodesic.mathdoc.fr/item/INTO_2022_213_a4/
[1] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 1966
[2] Kazakov A. L., “O tochnykh resheniyakh kraevoi zadachi o dvizhenii teplovoi volny dlya uravneniya nelineinoi teploprovodnosti”, Sib. elektron. mat. izv., 16 (2019), 1057–1068 | Zbl
[3] Kazakov A. L., Kuznetsov P. A., “Ob analiticheskikh resheniyakh odnoi spetsialnoi kraevoi zadachi dlya nelineinogo uravneniya teploprovodnosti v polyarnykh koordinatakh”, Sib. zh. industr. mat., 21:2(74) (2018), 56–65 | Zbl
[4] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Postroenie reshenii kraevoi zadachi s vyrozhdeniem dlya nelineinoi parabolicheskoi sistemy”, Sib. zh. industr. mat., 24:4 (2021), 1–13
[5] Kazakov A. L., Spevak L. F., “Tochnye i priblizhennye resheniya vyrozhdayuscheisya sistemy reaktsiya-diffuziya”, Prikl. mekh. tekhn. fiz., 62:4 (2021), 169–180 | Zbl
[6] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR
[7] Sidorov A. F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001 | MR
[8] Cherniha R., Davydovych V., “Nonlinear reaction-diffusion systems with a non-constant diffusivity: Conditional symmetries in no-go case”, Appl. Math. Comput., 268 (2015), 23–34 | DOI | MR | Zbl
[9] Colombo E. H., Anteneodo C., “Nonlinear population dynamics in a bounded habitat”, J. Theor. Biology., 446 (2018), 11–18 | DOI | MR | Zbl
[10] Ding J., “Blow-up problem of quasilinear weakly coupled reaction-diffusion systems with Neumann boundary conditions”, J. Math. Anal. Appl., 502 (2021), 125283 | DOI | MR | Zbl
[11] Filimonov M. Yu., “Representation of solutions of boundary-value problems for nonlinear evolution equations by special series with recurrently caculated coefficients”, J. Phys. Conf. Ser., 2019
[12] Filimonov M. Yu., Korzunin L. G., Sidorov A. F., “Approximate methods for solving nonlinear initial boundary-value problems based on special construction of series”, Russ. J. Numer. Anal. Math. Model., 8:2 (1993), 101–125 | DOI | MR | Zbl
[13] Fotache A. R., Muratori M., “Smoothing effects for the filtration equation with different powers”, J. Differ. Equations., 263 (2017), 3291–3326 | DOI | MR | Zbl
[14] Gambino G., Lombardo M. C., Sammartino M., Sciacca V., “Turing pattern formation in the Brusselator system with nonlinear diffusion”, Phys. Rev. E., 88 (2013), 042925 | DOI
[15] Kazakov A. L., Kuznetsov P. A., “Analytical diffusion wave-type solutions to a nonlinear parabolic system with cylindrical and spherical symmetry”, Izv. Irkut. gos. un-ta. Ser. Mat., 37 (2021), 31–46 | MR | Zbl
[16] Kazakov A. L., Kuznetsov P. A., Lempert A. A., “Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type”, Symmetry., 12:6 (2020), 999 | DOI | MR
[17] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Analytical and numerical construction of heat wave type solutions to the nonlinear heat equation with a source”, J. Math. Sci., 239:2 (2019), 111–122 | DOI | MR | Zbl
[18] Kazakov A. L., Spevak L. F., “An analytical and numerical study of a nonlinear parabolic equation with degeneration for the cases of circular and spherical symmetry”, Appl. Math. Model., 40:2 (2016), 1333–1343 | DOI | MR | Zbl
[19] Kumar N., Horsthemke W., “Turing bifurcation in a reaction-diffusion system with density-dependent dispersal”, Phys. A., 389 (2010), 1812–1818 | DOI
[20] Murray J., Mathematical Biology: I. An Introduction, Springer, New York, 2002 | MR
[21] Stepanova I. V., “Group analysis of variable coefficients heat and mass transfer equations with power nonlinearity of thermal diffusivity”, Appl. Math. Comput., 343 (2019), 57–66 | DOI | MR | Zbl
[22] Vazquez J. L., The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007 | MR